Here we provide RD Sharma Class 12 Ex 7.2 Solutions Chapter 7 Adjoint and Inverse of a Matrix for English medium students, Which will very helpful for every student in their exams. Students can download the RD Sharma Class 12 Ex 7.2 Solutions Chapter 7 Adjoint and Inverse of a Matrix book pdf download. Now you will get step-by-step solutions to each question.
Textbook | NCERT |
Class | Class 12th |
Subject | Maths |
Chapter | 7 |
Exercise | 7.2 |
Category | RD Sharma Solutions |
RD Sharma Class 12 Ex 7.2 Solutions Chapter 7 Adjoint and
Find the inverse of each of the following matrices by using elementary row transformation(Questions 1- 16):
Question 1.
Solution:
Here, A =
A = AI
Using elementary row operation
⇒
R1 -> 1/7R1
⇒
R2 -> R2 – 4R1
⇒
R2 -> (-7/25)R2
⇒
R1 -> R1 – 1/7R2
⇒
Therefore, A-1 =
Question 2. 
Solution:
Here, A =
A = AI
Using elementary row operation
⇒
R1 -> 1/5R1
⇒
R1 -> R2 – 2R1
⇒
R2 -> 5R2
⇒
R1 -> R1 – 2/5R2
⇒
Therefore, A-1=
Question 3. 
Solution:
Here, A =
A = AI
Using elementary row operation
⇒
R2 -> R2 + 3R1
⇒
R2 -> 1/23R2
⇒
R1 -> R1 – 6R1
⇒
Therefore, A-1 =
![]()
Question 4. 
Solution:
Here,
A = AI
Using elementary row operation
⇒
R1 -> 1/2R1
⇒
R2 -> R2 – R1
⇒
R2 -> 2R2
⇒
R1 -> R1 – 5/2R2
⇒
Therefore, A-1 =
![]()
Question 5. 
Solution:
Here, A =
A = AI
⇒
R1 -> 1/3R1
R2 -> R2 – 2R1
R2 -> 3R2
R1 -> R1 – 10/3R2
⇒
Therefore, A-1 =
Question 6. 
Solution:
Here, A =
A = IA
⇒
R1 ↔ R2
⇒
R3 -> R3 – 3R1
⇒
R1 -> R1 – 2R2, R3 -> R3 + 5R2
⇒
R3 -> R3/2
⇒
R1 -> R1 + R3, R2 -> R2 – 2R3
⇒
Therefore, A-1 =
Question 7. 
Solution:
Here, A =
A = IA
⇒
R1 -> R1/2
⇒
R2 -> R2 – 5R1
⇒
R3 -> R3 – R2
⇒
R3 -> 2R3
⇒
R1 -> R1 + 1/2R3, R2 -> R2 – 5/2R3
⇒
Therefore, A-1 =
![]()
Question 8. 
Solution:
Here, A =
A = IA
⇒
R1 -> 1/2R1
⇒
R2 -> R2 – 2R1, R3 -> R3 – 3R1
⇒
R1 -> R1 – 3/2R2, R3 -> R3 – 5/2R2
⇒
R3 -> 2R3
⇒
R1 -> R1 – 1/2R3
⇒
Therefore, A-1 =
![]()
Question 9. 
Solution:
Here, A =
A = IA
⇒
R1 -> 1/3R1
⇒
R2 -> R2 – 2R1
⇒
R2 -> (-1)R2
⇒
R1 -> R1 + R2, R3 -> R3 + R2
⇒
R3 -> (-3)R3
⇒
R2 -> R2 + 4/3R3
⇒
Therefore, A-1 =
![]()
Question 10. 
Solution:
Here, A =
⇒
R2 -> R2 – 2R1, R3 -> R3 – R1
⇒
R2 -> (-1)R2
⇒
R1 -> R1 – 2R2, R3 -> R3 + 3R2
⇒
R3 -> R3/6
⇒
R1 -> R1 + 2R3, R2 -> R2 – R3
⇒
Therefore, A-1 =
![]()
Question 11. 
Solution:
Here, A =
A = IA
⇒
R1 -> R1/2
⇒
R2 -> R2 – R1, R3 -> R3 – 3R1
⇒
R2 -> (2/5)R2
⇒
R1 -> R1 + 1/2 R2, R3 -> R3 – 5/2R2
⇒
R3 -> R3/-6
⇒
R2 -> R2 – R3, R1 -> R1 – 2R3
⇒
Therefore, A-1 =
Question 12. 
Solution:
Here, A =
A = IA
⇒
R2 -> R2 – 3R1, R3 -> R3 – 2R1
⇒
R2 -> R2/(-2)
⇒
R1 -> R1 – R2, R3 -> R3 – R2
⇒
R3 -> (-2/11)R3
⇒
R1 -> R1 + 1/2R3, R2 -> R2 – 5/2R3
⇒
Therefore, A-1 =
Question 13. 
Solution:
Here, A =
A = IA
⇒
R1 -> 1/2R1
⇒
R2 -> R2 – 4R1, R3 -> R3 – 3R1
⇒
R2 -> 1/2R2
⇒
R1 -> R1 + 1/2R2, R3 -> R3 + 1/2R2
⇒
R3 -> (-2)R3
⇒
R1 -> R1 – 1/2R3, R2 -> R2 + 3R3
⇒
Therefore, A-1 =
Question 14. 
Solution:
Here, A =
A = IA
⇒
R1 -> (1/3)R1
⇒
R2 -> R2 – 2R1
⇒
R2 -> (1/3)R2
⇒
R3 -> R3 – 4R2
⇒
R3 -> 9R3
⇒
R1 -> R1 + 1/3R3, R2 -> R2 – 2/9R3
⇒
Therefore, A-1 =
Question 15. 
Solution:
Here, A =
A = IA
⇒
R2 -> 3R1 + R2, R3 -> R3 – 2R1
⇒
R1 -> R1 – 3R2, R3 -> R3 + 5R2
⇒
R2 -> R2 + 5/9R3, R1 -> R1 + 1/3R3
⇒
Therefore, A-1 =
Question 16. 
Solution:
Here, A=
A = IA
⇒
R1 -> (-1)R1
⇒
R2 -> R2 – R1, R3 -> R3 – 3R1
⇒
R2 -> R2/3
⇒
R1 -> R1 + R2, R3 -> R3 – 4R2
⇒
R3 -> R3/3
⇒
R1 -> R1 + 1/3R3, R2 -> R2 – 5/3R3
⇒
Therefore, A-1 =
![]()
I think you got complete solutions for this chapter. If You have any queries regarding this chapter, please comment in the below section our subject teacher will answer you. We tried our best to give complete solutions so you got good marks in your exam.
If these solutions have helped you, you can also share rdsharmasolutions.in to your friends.