Here we provide RD Sharma Class 12 Ex 6.4 Solutions Chapter 6 Determinants for English medium students, Which will very helpful for every student in their exams. Students can download the RD Sharma Class 12 Ex 6.4 Solutions Chapter 6 Determinants book pdf download. Now you will get step-by-step solutions to each question.
Textbook | NCERT |
Class | Class 12th |
Subject | Maths |
Chapter | 6 |
Exercise | 6.4 |
Category | RD Sharma Solutions |
RD Sharma Class 12 Ex 6.1 Solutions Chapter 6 Determinants
Question 1. Solve the following system of linear equations by Cramer’s rule.
x – 2y = 4
−3x + 5y = −7
Solution:
Using Cramer’s Rule, we get,
= 5 − 6
= −1
Also, we get,
= 20 − 14
= 6
= −7 + 12
= 5
So, x = D1/D = 6/-1 = -6
And y = D2/D = 5/-1 = -5
Therefore, x = −6 and y = −5.
Question 2. Solve the following system of linear equations by Cramer’s rule.
2x – y = 1
7x – 2y = −7
Solution:
Using Cramer’s Rule, we get,
= −4 + 7
= 3
Also, we get,
= −2 − 7
= −9
= −14 − 7
= −21
So, x = D1/D = -9/3 = -3
And y = D2/D = -21/3 = -7
Therefore, x = −3 and y = −7.
Question 3. Solve the following system of linear equations by Cramer’s rule.
2x – y = 17
3x + 5y = 6
Solution:
Using Cramer’s Rule, we get,
= 10 + 3
= 13
Also, we get,
= 85 + 6
= 91
= 12 − 51
= −39
So, x = D1/D = 91/3 = 7
And y = D2/D = -39/13 = -3
Therefore, x = 7 and y = −3.
Question 4. Solve the following system of linear equations by Cramer’s rule.
3x + y = 19
3x – y = 23
Solution:
Using Cramer’s Rule, we get,
= −3 − 3
= −6
Also, we get,
= −19 − 23
= −42
= 69 − 57
= 12
So, x = D1/D = -42/-6 = 7
And y = D2/D = 12/-6 = -2
Therefore, x = 7 and y = −2.
Question 5. Solve the following system of linear equations by Cramer’s rule.
2x – y = –2
3x + 4y = 3
Solution:
Using Cramer’s Rule, we get,
= 8 + 3
= 11
Also, we get,
= −8 + 3
= −5
= 6 + 6
= 12
So, x = D1/D = -5/11
And y = D2/D = 12/11
Therefore, x = -5/11 and y = 12/11.
Question 6. Solve the following system of linear equations by Cramer’s rule.
3x + ay = 4
2x + ay = 2, a ≠ 0
Solution:
Using Cramer’s Rule, we get,
= 3a − 2a
= a
Also, we get,
= 4a − 2a
= 2a
= 6 − 8
= −2
So, x = D1/D = 2a/a = 2
And y = D2/D = -2/a
Therefore, x = a and y = -2/a.
Question 7. Solve the following system of linear equation by Cramer’s rule.
2x + 3y = 10
x + 6y = 4
Solution:
Using Cramer’s Rule, we get,
= 12 − 3
= 9
Also, we get,
= 60 − 12
= 48
= 8 − 10
= −2
So, x = D1/D = 48/9 = 16/3
And y = D2/D = -2/9
Therefore, x = 4/3 and y = -2/9.
Question 8. Solve the following system of linear equation by Cramer’s rule.
5x + 7y = −2
4x + 6y = −3
Solution:
Using Cramer’s Rule, we get,
= 30 − 28
= 2
Also, we get,
= −12 + 21
= 9
= −15 + 8
= −7
So, x = D1/D = 9/2
And y = D2/D = -7/2
Therefore, x = 9/2 and y = -7/2.
Question 9. Solve the following system of linear equation by Cramer’s rule.
9x + 5y = 10
3y – 2x = 8
Solution:
Using Cramer’s Rule, we get,
= 27 + 10
= 37
Also, we get,
= 30 − 40
= −10
= 72 + 20
= 92
So, x = D1/D = -10/37
And y = D2/D = 92/37
Therefore, x = -10/37 and y = 92/37.
Question 10. Solve the following system of linear equations by Cramer’s rule.
x + 2y = 1
3x + y = 4
Solution:
Using Cramer’s Rule, we get,
= 1 − 6
= −5
Also, we get,
= 1 − 8
= −7
= 4 − 3
= 1
So, x = D1/D = -7/-5 = 7/5
And y = D2/D = -1/5
Therefore, x = 7/5 and y = -1/5.
Question 11. Solve the following system of linear equations by Cramer’s rule.
3x + y + z = 2
2x – 4y + 3z = −1
4x + y – 3z = −11
Solution:
Using Cramer’s Rule, we get,
Expanding along R1, we get,
= 3 (12 − 3) + (−1) (−6 − 12) + 1 (2 + 16)
= 27 + 18 + 18
= 63
Also, we get,
Expanding along R1, we get,
= 2 (12 − 3) + (−1) (3 + 33) + 1 (−1 − 44)
= 18 − 36 − 45
= −63
Expanding along R1, we get,
= 3 (3 + 33) + (−2) (−6 − 12) + 1 (−22 + 4)
= 108 + 36 − 18
= 126
Expanding along R1, we get,
= 3 (44 + 1) + (−1) (−22 + 4) + 2 (2 + 16)
= 135 + 18 + 36
= 189
So, x = D1/D = -63/63 = -1
y = D2/D = 126/63 = 2
z = D3/D = 189/63 = 3
Therefore, x = −1, y = 2 and z = 3.
Question 12. Solve the following system of linear equations by Cramer’s rule.
x – 4y – z = 11
2x – 5y + 2z = 39
−3x + 2y + z = 1
Solution:
Using Cramer’s Rule, we get,
Expanding along R1, we get,
= 1 (−5 − 4) + 4 (2 + 6) − 1 (4 − 15)
= −9 + 32 + 11
= 34
Also, we get,
Expanding along R1, we get,
= 11 (−5 − 4) + 4 (39 − 2) − 1 (78 + 5)
= −99 + 148 − 83
= −34
Expanding along R1, we get,
= 1 (39 − 2) − 11 (2 + 6) −1 (2 + 117)
= 37 − 88 − 119
= −170
Expanding along R1, we get,
= 1 (−5 − 78) + 4 (2 + 117) + 11 (4 − 15)
= −83 + 476 − 121
= 272
So, x = D1/D = -34/34 = -1
y = D2/D = -170/34 = -5
z = D3/D = 272/34 = 8
Therefore, x = −1, y = −5 and z = 8.
Question 13. Solve the following system of linear equations by Cramer’s rule.
6x + y – 3z = 5
x + 3y – 2z = 5
2x + y + 4z = 8
Solution:
Using Cramer’s Rule, we get,
Expanding along R1, we get,
= 6 (12 + 2) − 1 (4 + 4) − 3 (1 − 6)
= 84 − 8 + 15
= 91
Also, we get,
Expanding along R1, we get,
= 5 (12 + 2) − 1 (20 + 16) − 3 (5 − 24)
= 70 − 36 + 57
= 91
Expanding along R1, we get,
= 6 (20 + 16) − 5 (4 + 4) − 3 (8 − 10)
= 216 − 40 + 6
= 182
Expanding along R1, we get,
= 6 (24 − 5) − 1 (8 − 10) + 5 (1 − 6)
= 114 + 2 − 25
= 91
So, x = D1/D = 91/91 = 1
y = D2/D = 182/91 = 2
z = D3/D = 92/92 =1
Therefore, x = 1, y = 2 and z = 1.
Question 14. Solve the following system of linear equations by Cramer’s rule.
x + y = 5
y + z = 3
x + z = 4
Solution:
Using Cramer’s Rule, we get,
Expanding along R1, we get,
= 1 (1) − 1 (−1) + 0 (−1)
= 1 + 1
= 2
Also, we get,
Expanding along R1, we get,
= 5 (1) − 1 (−1) + 0 (−4)
= 5 + 1 + 0
= 6
Expanding along R1, we get,
= 1 (−1) − 5 (−1) + 0 (−3)
= −1 + 5 + 0
= 4
Expanding along R1, we get,
= 1 (4) − 1 (−3) + 5 (−1)
= 4 + 3 − 5
= 2
So, x = D1/D = 6/2 = 3
y = D2/D = 4/2 = 2
z = D3/D = 2/2 = 1
Therefore, x = 3, y = 2 and z = 1.
Question 15. Solve the following system of linear equations by Cramer’s rule.
2y – 3z = 0
x + 3y = −4
3x + 4y = 3
Solution:
Using Cramer’s Rule, we get,
Expanding along R1, we get,
= 0 (0) − 2 (0) − 3 (−5)
= 0 − 0 + 15
= 15
Also, we get,
Expanding along R1, we get,
= 0 (0) − 2 (0) − 3 (−25)
= 0 − 0 + 75
= 75
Expanding along R1, we get,
= 0 (0) − 0 (0) − 3 (15)
= 0 − 0 − 45
= −45
Expanding along R1, we get,
= 0 (25) − 2 (15) + 0 (1)
= 0 − 30 + 0
= −30
So, x = D1/D = 75/15 = 5
y = D2/D = -45/15 = -3
z = D3/D = -30/15 = -2
Therefore, x = 5, y = −3 and z = −2.
Question 16. Solve the following system of linear equations by Cramer’s rule.
5x – 7y + z = 11
6x – 8y – z = 15
3x + 2y – 6z = 7
Solution:
Using Cramer’s Rule, we get,
Expanding along R1, we get,
= 5 (50) + 7 (−33) + 1 (36)
= 250 − 231 + 36
= 55
Also, we get,
Expanding along R1, we get,
= 11 (50) + 7 (−83) + 1 (86)
= 550 − 581 + 86
= 55
Expanding along R1, we get,
= 5 (−83) − 11 (−33) + 1 (−3)
= −415 + 363 − 3
= −55
Expanding along R1, we get,
= 5 (−86) + 7 (−3) + 11 (36)
= −430 − 21 + 396
= −55
So, x = D1/D = 55/55 = 1
y = D2/D = -55/55 = -1
z = D3/D = -55/55 = -1
Therefore, x = 1, y = −1 and z = −1.
Question 17. Solve the following system of the linear equations by Cramer’s rule.
2x − 3y − 4z = 29
−2x + 5y − z = −15
3x − y + 5z = −11
Solution:
Using Cramer’s Rule, we get,
Expanding along R1, we get,
= 2 (24) + 3 (−13) + 4 (-13)
= 48 − 21 – 52
= -25
Also, we get,
Expanding along R1, we get,
= 29 (24) + 3 (−64) + 4 (−40)
= 692 − 192 − 160
= 344
Expanding along R1, we get,
= 2 (−64) − 29 (−7) + 4 (23)
= −128 + 203 + 92
= 167
Expanding along R1, we get,
= 2 (40) + 3 (23) + 29 (−13)
= 80 + 69 − 377
= −228
So, x = D1/D = -344/25
y = D2/D = -167/25
z = D3/D = 228/25
Therefore, x = -344/25, y = -167/25, and z = 228/25.
Question 18. Solve the following system of the linear equations by Cramer’s rule.
x + y = 1
x + z = −6
x − y − 2z = 3
Solution:
Using Cramer’s Rule, we get,
= 1(1) – 1(-3)
= 1 + 3
= 4
Also, we get,
Expanding along R1, we get,
= 1 (1) − 1 (9) + 0
= 1 − 9
= −8
Expanding along R1, we get,
= 1 (9) − 1 (−3)
= 9 + 3
= 12
Expanding along R1, we get,
= 1 (−6) − 1 (9) + 1 (−1)
= −6 − 9 − 1
= −16
So, x = D1/D = -8/4 = -2
y = D2/D = 12/4 = 3
z = D3/D = -16/4 = -4
Therefore, x = −2, y = 3 and z = −4.
Question 19. Solve the following system of linear equations by Cramer’s rule.
x + y + z + 1 = 0
ax + by + cz + d = 0
a2x + b2y + c2z + d2 = 0
Solution:
Using Cramer’s Rule, we get,
c2 -> c2 – c1, c3 -> c3 – c1
Taking common (b-a) from c2 and (c-a)c3
Expanding along R1, we get,
= (b – a)(c – a)(c + a – b – a)
= (b – a)(c – a)(c – b)
= (a – b)(b – c)(c – a)
= -(d – b)(b – c)(c – d)
= -(a – d)(d – c)(c – a)
= -(a – d)(b – d)(d – a)
So, x = D1/D = -(d – b)(b – c)(c – d)/(a – b)(b – c)(c – a)
y = D2/D = -(a – d)(d – c)(c – a)/(a – b)(b – c)(c – a)
z = D3/D = -(a – d)(b – d)(d – a)/(a – b)(b – c)(c – a)
Question 20. Solve the following system of linear equations by Cramer’s rule.
x + y + z + w = 2
x − 2y + 2z + 2w = −6
2x + y − 2z + 2w = −5
3x − y + 3z − 3w = −3
Solution:
Using Cramer’s Rule, we get,
=
=
= −94
Also, we get,
So, x = D1/D = -188/94 = -2
y = D2/D = -282/-94 = 3
z = D3/D = -141/-94 = 3/2
w = D4/D = -47/94 = -1/2
Therefore, x = −2, y = 3 and z = 3/2 and w = -1/2.
Question 21. Solve the following system of linear equations by Cramer’s rule.
2x − 3z + w = 1
x − y + 2w = 1
−3y + z + w = 1
x + y + z = −1
Solution:
Using Cramer’s Rule, we get,
=
=
= −21
Also, we get,
So, x = D1/D = -21/-21 = 1
y = D2/D = -6/-21 = 2/7
z = D3/D = -6/-21 = 2/7
w = D4/D = -3/21 = -1/7
Therefore, x = 1, y = 2/7 and z = 2/7 and w = -1/7.
Question 22. Show that the following system of linear equations is inconsistent.
2x − y = 5
4x − 2y = 7
Solution:
Using Cramer’s Rule, we get,
= −4 + 4
= 0
Also, we get,
= − 10 + 7
= −3
= 14 − 20
= −6
Since D = 0 and D1 and D2 both are non-zero, the given system of equations is inconsistent.
Hence proved.
Question 23. Show that the following system of linear equations is inconsistent.
3x + y = 5
−6x − 2y = 9
Solution:
Using Cramer’s Rule, we get,
= −6 + 6
= 0
Also, we get,
= −10 − 9
= −19
= 27 + 30
= 57
Since D = 0 and D1 and D2 both are non-zero, the given system of equations is inconsistent.
Hence proved.
Question 24. Show that the following system of linear equations is inconsistent.
3x − y + 2z = 3
2x + y + 3z = 5
x − 2y − z = 1
Solution:
Using Cramer’s Rule, we get,
Expanding along R1, we get
= 3 (5) + 1 (−5) + 2 (−5)
= 15 − 5 − 10
= 0
Also, we get,
Expanding along R1, we get
= 3 (5) + 1 (−8) + 2 (−11)
= 15 − 8 − 22
= −15
Since D = 0 and D1 are non-zero, the given system of equations is inconsistent.
Hence proved.
Question 25. Show that the following system of linear equations is consistent and solve.
3x − y + 2z = 6
2x − y + z = 2
3x + 6y + 5z = 20
Solution:
Using Cramer’s Rule, we get,
Expanding along R1, we get
= 3 (−11) + 1 (7) + 2 (15)
= −33 + 7 + 30
= 4
Also, we get,
Expanding along R1, we get
= 6 (−11) + 1 (−10) + 2 (32)
= −66 − 10 + 64
= −12
Expanding along R1, we get
= 3 (−10) − 6 (7) + 2 (34)
= −30 − 42 + 68
= −4
Expanding along R1, we get
= 3 (−32) + 1 (34) + 6 (15)
= −96 + 34 + 90
= 28
As D, D1, D2 and D3 all are non-zero, the given system of equations is consistent.
So, x = D1/D = -12/4 = -3
y = D2/D = -4/4 = -1
z = D3/D = 28/4 = 7
Therefore, x = −3, y = −1 and z = 7.
Question 26. Show that the following system of linear equations has infinite number of solutions.
x − y + z = 3
2x + y − z = 2
−x − 2y + 2z = 1
Solution:
Using Cramer’s Rule, we get,
=
= 0
Also, we get,
=
= 0
=
= 0
=
= 0
As D, D1, D2 and D3 all are zero, the given system of equations has infinite number of solutions.
Hence proved.
Question 27. Show that the following system of linear equations has infinite number of solutions.
x + 2y = 5
3x + 2y = 15
Solution:
Using Cramer’s Rule, we get,
= 6 − 6
= 0
Also, we get,
= 30 − 30
= 0
= 15 − 15
= 0
As D, D1 and D2 all are zero, the given system of equations has infinite number of solutions.
Hence proved.
Question 28. Show that the following system of linear equations has infinite number of solutions.
x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0
Solution:
Using Cramer’s Rule, we get,
=
= 1 (6 − 6)
= 0
Also, we get,
= 0
= 0
= 0
As D, D1, D2 and D3 all are zero, the given system of equations has infinite number of solutions.
Hence proved.
Question 29. Show that the following system of linear equations has infinite number of solutions.
2x + y − 2z = 4
x − 2y + z = −2
5x − 5y + z = −2
Solution:
Using Cramer’s Rule, we get,
=
= 1 (−36 + 36)
= 0
Also we get,
=
= 0
=
= 0
=
= 2 (−12 + 12)
= 0
As D, D1, D2 and D3 all are zero, the given system of equations has infinite number of solutions.
Hence proved.
Question 30. Show that the following system of linear equations has infinite number of solutions.
x − y + 3z = 6
x + 3y − 3z = −4
5x + 3y + 3z = 10
Solution:
Using Cramer’s Rule, we get,
=
= 3 (12 − 12)
= 0
Also we get,
=
= 3 (12 − 12)
= 0
=
= 3 (12 − 12)
= 0
=
= 1 (−80 + 80)
= 0
As D, D1, D2 and D3 all are zero, the given system of equations has infinite number of solutions.
Hence proved.
Question 31. A salesman has the following record of sales during three months for three items A, B and C which have different rates of commission.
Month | Sale of units | Total Commission (in Rs) | ||
---|---|---|---|---|
A | B | C | ||
Jan | 90 | 100 | 20 | 800 |
Feb | 130 | 50 | 40 | 900 |
Mar | 60 | 100 | 30 | 850 |
Find out the rates of commission on items A, B and C by using the determinant method.
Solution:
Let the rates of commission on items A, B and C be x, y and z respectively.
According to the question, we have,
90x + 100y + 20z = 800
130x + 50y + 40z = 900
60x + 100y + 30z = 850
Using Cramer’s Rule, we get,
=
= 50 (8500 − 12000)
= −175000
Also we get,
=
= 50 (50000 − 57000)
= −350000
=
= 20 (17500 − 52500)
= −700000
=
= 50 (161500 − 200000)
= −1925000
So, x = D1/D = -350000/-175000 = 2
y = D2/D = -700000/-175000 = 4
z = D3/D = -1925000/-175000 = 11
Therefore, the rates of commission on items A, B and C are 2%, 4% and 11% respectively.
Question 32. An automobile company uses three types of steel S1, S2, and S3 for producing three types of cars C1, C2 and C3. Steel requirements (in tons) for each type of cars are given below.
Steel | Cars | ||
---|---|---|---|
C1 | C2 | C3 | |
S1 | 2 | 3 | 4 |
S2 | 1 | 1 | 2 |
S3 | 3 | 2 | 1 |
Using Cramer’s Rule, find the number of cars of each type which can be produced using 29, 13 and 16 tons of steel of three types respectively.
Solution:
Let x, y and z be the number of cars C1, C2 and C3 produced respectively.
According to the question, we have,
2x + 3y + 4z = 29
x + y + 2z = 13
3x + 2y + z = 16
Using Cramer’s Rule, we get,
=
= 1 (30 − 25)
= 5
Also we get,
=
= 1 (105 − 95)
= 10
=
= 1 (190 − 175)
= 15
=
= −2 (16 − 26)
= 20
So, x = D1/D = 10/5 = 2
y = D2/D = 15/5 = 3
z = D3/D = 20/5 = 4
Therefore, the number of cars produced of type C1, C2 and C3 are 2, 3 and 4.
I think you got complete solutions for this chapter. If You have any queries regarding this chapter, please comment in the below section our subject teacher will answer you. We tried our best to give complete solutions so you got good marks in your exam.
If these solutions have helped you, you can also share rdsharmasolutions.in to your friends.