RD Sharma Class 12 Ex 5.5 Solutions Chapter 5 Algebra of Matrices

Here we provide RD Sharma Class 12 Ex 5.5 Solutions Chapter 5 Algebra of Matrices for English medium students, Which will very helpful for every student in their exams. Students can download the RD Sharma Class 12 Ex 5.5 Solutions Chapter 5 Algebra of Matrices book pdf download. Now you will get step-by-step solutions to each question.

TextbookNCERT
ClassClass 12th
SubjectMaths
Chapter5
Exercise5.5
CategoryRD Sharma Solutions

RD Sharma Class 12 Ex 5.5 Solutions Chapter 5 Algebra of Matrices

Question 1: If\ A=\begin{bmatrix}2&3\\4&5\end{bmatrix},\ prove\ that\ A-A^T\ is\ a\ skew-symmetric\ matrix.

Solution:

Given:

If\ A=\begin{bmatrix}2&3\\4&5\end{bmatrix},\ that\ A-A^T\ is\ a\ skew-symmetric\ matrix.

Consider,

(A-A^T)=\left(\begin{bmatrix}2&3\\4&5\end{bmatrix}-\begin{bmatrix}2&3\\4&5\end{bmatrix}^T\right)\\ =\left(\begin{bmatrix}2&3\\4&5\end{bmatrix}-\begin{bmatrix}2&3\\4&5\end{bmatrix}\right)\\ =\begin{bmatrix}2-2&3-4\\4-3&5-5\end{bmatrix}\\ (A-A^T)=\begin{bmatrix}0&-1\\1&0\end{bmatrix}---(equation\ 1)\\ -(A-A^T)^T=-\begin{bmatrix}0 & -1\\1 & 0\end{bmatrix}^T\\ =-\begin{bmatrix}0 & 1\\-1 & 0\end{bmatrix}\\ -(A-A^T)=\begin{bmatrix}0 & -1\\1 & 0\end{bmatrix}---(equation\ 2)

From equation (1) and (2) it can be seen that,

A skew-symmetric matrix is a square matrix whose transpose equal to its negative, that is,

X = −XT

So, A − AT is a skew-symmetric.

Question 2: If \ A=\begin{bmatrix}3 & -4\\1 & -1\end{bmatrix},\ show\ that\ A-A^T\ is\ a\ skew-symmetric\ matrix.

Solution:

Given:

If \ A=\begin{bmatrix}3 & -4\\1 & -1\end{bmatrix},\ that\ A-A^T\ is\ a\ skew-symmetric\ matrix.

Consider,

(A-A^T)=\begin{bmatrix}0 & -5\\5 & 0\end{bmatrix}---(equation\ 1)\\ -(A-A^T)^T=-\begin{bmatrix}0 & -5\\5 & 0\end{bmatrix}^T\\ =-\begin{bmatrix}0 & 5\\-5 & 0\end{bmatrix}\\ -(A-A^T)=\begin{bmatrix}0 & -5\\5 & 0\end{bmatrix}---(equation\ 2)

From equation (1) and (2) it can be seen,

A skew-symmetric matrix is a square matrix whose transpose equals its negative, that is,

X = −XT

Thus, A − AT is a skew-symmetric matrix.

Question 3: If\ the\ matrix\ A=\begin{bmatrix}5 & 2 & x\\y & z & -3\\4 & t & -7\end{bmatrix},\ is\ a\ symmetric\ matrix\ find\ x,\ y,\ z\ and\ t

Solution:

Given:

A=\begin{bmatrix}5 & 2 & x\\y & z & -3\\4 & t & -7\end{bmatrix}is\ a\ symmetric\ matix.

As we know that A = [aij]m×n is a symmetric matrix if aij = aji

Thus,

x = a13 = a31 = 4

y = a21 = a12 = 2

z = a22 = a22 = z

t = a32 = a23 = −3

Hence, x = 4, y = 2, t = −3 and z can have any value.

Questiion 4: Let\ A=\begin{bmatrix}3 & 2 & 7\\1 & 4 & 3\\-2 & 5 & 8\end{bmatrix},\ Find\ matrices\ X\ and\ Y\ such\ that\ X+Y=A,\ where\ X\ is\ a\ symmetric\ and\ y\ is\ a\ skew-symmetric\ matrix.

Solution:

Given:

A=\begin{bmatrix}3 & 2 & 7\\1 & 4 & 3\\-2 & 5 & 8\end{bmatrix}then\\ A=\begin{bmatrix}3 & 1 & -2\\2 & 4 & 5\\7 & 3 & 8\end{bmatrix}\\ X=\frac{1}{2}(A+A^T)\\ =\frac{1}{2}\left(\begin{bmatrix}3 & 2 & 7\\1 & 4 & 3\\-2 & 5 & 8\end{bmatrix}+\begin{bmatrix}3 & 1 & -2\\2 & 4 & 5\\7 & 3 & 8\end{bmatrix}\right)\\ =\frac{1}{2}\begin{bmatrix}3+3 & 2+1 & 7-2\\1+2 & 4+4 & 3+5\\-2+7 & 5+3 & 8+8\end{bmatrix}\\ =\frac{1}{2}\begin{bmatrix}6 & 3 & 5\\3 & 8 & 8\\5 & 8 & 16\end{bmatrix}\\ X=\begin{bmatrix}3 & \frac{3}{2} & \frac{5}{2}\\\frac{3}{2} & 4 & 4\\\frac{5}{2} & 4 & 8\end{bmatrix}\\ Now,\\ Y=\frac{1}{2}(A-A^T)\\ =\frac{1}{2}\left(\begin{bmatrix}3 & 2 & 7\\1 & 4 & 3\\-2 & 5 & 8\end{bmatrix}-\begin{bmatrix}3 & 1 & -2\\2 & 4 & 5\\7 & 3 & 8\end{bmatrix}\right)\\ =\frac{1}{2}\begin{bmatrix}3-3 & 2-1 & 7+2\\1-2 & 4-4 & 3-5\\-2-7 & 5-3 & 8-8\end{bmatrix}\\ =\frac{1}{2}\begin{bmatrix}0 & 1 & 9\\-1 & 0 & -2\\-9 & 2 & 0\end{bmatrix}\\ Y=\begin{bmatrix}0 & \frac{1}{2} & \frac{9}{2}\\-\frac{1}{2} & 0 & -1\\-\frac{9}{2} & 1 & 0\end{bmatrix}\\ Now,\\ X^T=\begin{bmatrix}3 & \frac{3}{2} & \frac{5}{2}\\\frac{3}{2} & 4 & 4\\\frac{5}{2} & 4 & 8\end{bmatrix}^T =\begin{bmatrix}3 & \frac{3}{2} & \frac{5}{2}\\\frac{3}{2} & 4 & 4\\\frac{5}{2} & 4 & 8\end{bmatrix}=X\\ X\ is\ a\ symmetric\ martix\\ Now,\\ -Y^T=-\begin{bmatrix}0 & \frac{1}{2} & \frac{9}{2}\\-\frac{1}{2} & 0 & -1\\-\frac{9}{2} & 1 & 0\end{bmatrix}^T=-\begin{bmatrix}0 & -\frac{1}{2} & -\frac{9}{2}\\\frac{1}{2} & 0 & 1\\\frac{9}{2} & -1 & 0\end{bmatrix}\\ -Y^T=\begin{bmatrix}0 & \frac{1}{2} & \frac{9}{2}\\-\frac{1}{2} & 0 & -1\\-\frac{9}{2} & 1 & 0\end{bmatrix}\\ -Y^T=Y\\ Y\ is\ a\ skew\ symmetric\ matrix.\\ X+Y=\begin{bmatrix}3 & \frac{3}{2} & \frac{5}{2}\\\frac{3}{2} & 4 & 4\\\frac{5}{2} & 4 & 8\end{bmatrix}+\begin{bmatrix}0 & \frac{1}{2} & \frac{9}{2}\\-\frac{1}{2} & 0 & -1\\-\frac{9}{2} & 1 & 0\end{bmatrix}\\ =\begin{bmatrix}3+0 & \frac{3}{2}+\frac{1}{2} & \frac{5}{2}+\frac{9}{2}\\\frac{3}{2}-\frac{1}{2} & 4+0 & 4-1\\\frac{5}{2}-\frac{9}{2} & 4+1 & 8+0\end{bmatrix}\\ =\begin{bmatrix}3 & 2 & 7\\1 & 4 & 3\\-2 & 5 & 8\end{bmatrix}=A\\ Hence, X+Y = A

I think you got complete solutions for this chapter. If You have any queries regarding this chapter, please comment in the below section our subject teacher will answer you. We tried our best to give complete solutions so you got good marks in your exam.

If these solutions have helped you, you can also share rdsharmasolutions.in to your friends.

Leave a Comment

Your email address will not be published.