Here we provide RD Sharma Class 12 Ex 5.4 Solutions Chapter 5 Algebra of Matrices for English medium students, Which will very helpful for every student in their exams. Students can download the RD Sharma Class 12 Ex 5.4 Solutions Chapter 5 Algebra of Matrices book pdf download. Now you will get step-by-step solutions to each question.

Textbook | NCERT |

Class | Class 12th |

Subject | Maths |

Chapter | 5 |

Exercise | 5.4 |

Category | RD Sharma Solutions |

**RD Sharma Class 12 Ex 5.4 Solutions Chapter 5 Algebra of Matrices**

**Question 1: Let A =** **and B = ****verify that**

**(i) (2A) ^{T} = 2A^{T}**

**(ii) (A + B) ^{T} = A^{T} + B^{T}**

**(iii) (A − B) ^{T} = A^{T} − B^{T}**

**(iv) (AB) ^{T} = B^{T} A^{T}**

**Solution:**

**(i)** Given: A = and B =

Assume,

(2A)^{T} = 2A^{T}

Substitute the value of A

L.H.S = R.H.S

Hence, proved.

**(ii) **Given: A = and B =

Assume,

(A+B)^{T} = A^{T} + B^{T}

L.H.S = R.H.S

Hence, proved.

**(iii)** Given: A= and B=

Assume,

(A − B)^{T} = A^{T} − B^{T}

L.H.S = R.H.S

Hence, proved

**(iv)** Given: A = and B =

Assume,

(AB)^{T} = B^{T}A^{T}

Therefore, (AB)^{T} = B^{T}A^{T}

Hence, proved.

**Question 2: A =** **and B = **** Verify that (AB)**^{T} = B^{T}A^{T}

^{T}= B

^{T}A

^{T}

**Solution**:

Given: A = and B =

Assume,

(AB)^{T} = B^{T}A^{T}

L.H.S = R.H.S

Hence proved

**Question 3: Let A = ****and B = **

**Find A**^{T}, B^{T} and verify that

^{T}, B

^{T}and verify that

**(i) (A + B) ^{T} = A^{T} + B^{T}**

**(ii) (AB) ^{T} = B^{T}A^{T}**

**(iii) (2A) ^{T} = 2A^{T}**

**Solution:**

**(i) **Given: A =

and B =

Assume

(A + B)^{T} = A^{T} + B^{T}

L.H.S = R.H.S

Hence proved

**(ii)** Given: A = and B =

Assume,

(AB)^{T} = B^{T}A^{T}

L.H.S =R.H.S

Hence proved

**(iii)** Given: A = and B =

Assume,

(2A)^{T} = 2A^{T}

L.H.S = R.H.S

Hence proved

**Question 4: if A = ****, B = ****, verify that (AB)**^{T} = B^{T}A^{T}

^{T}= B

^{T}A

^{T}

**Solution:**

Given: A = and B =

Assume,

(AB)^{T} = B^{T}A^{T}

L.H.S = R.H.S

Hence proved

**Question 5: If A = ****and B = ****, find (AB)T**

**Solution:**

Given: A = and B =

Here we have to find (AB)^{T}

Hence,

(AB)^{T} =

**Question 6: **

**(i) For two matrices A and B, **** verify that (AB)**^{T} = B^{T}A^{T}

^{T}= B

^{T}A

^{T}

**Solution:**

Given,

(AB)^{T} = B^{T}A^{T}

⇒

⇒

⇒

⇒

⇒ L.H.S = R.H.S

Hence,

(AB)^{T} = B^{T}A^{T}

**(ii) For the matrices A and B, verify that (AB)**^{T} = B^{T}A^{T}, where

^{T}= B

^{T}A

^{T}, where

**Solution:**

Given,

(AB)^{T} = B^{T}A^{T}

⇒

⇒

⇒

⇒

⇒ L.H.S = R.H.s

So,

(AB)^{T} = B^{T}A^{T}

**Question 7: Find ****, A**^{T} – B^{T}

^{T}– B

^{T}

**Solution:**

Given that

We need to find A^{T} – B^{T}.

Given that,

Let us find A^{T} – B^{T}

⇒

⇒

⇒

**Question 8: If ****, then verify that A’A = 1**

**Solution:**

⇒

⇒

⇒

Hence,we have verified that A’A = I

**Question 9: ****, then verify that A’A = I**

**Solution:**

Hence, we have verified that A’A = I

**Question 10: If l**_{i}, m_{i}, n_{i} ; i = 1, 2, 3 denote the direction cosines of three mutually perpendicular vectors in space, prove that AA^{T} = I,

_{i}, m

_{i}, n

_{i}; i = 1, 2, 3 denote the direction cosines of three mutually perpendicular vectors in space, prove that AA

^{T}= I,

**Where **

**Solution:**

Given,

l_{i}, m_{i}, n_{i} are direction cosines of three mutually perpendicular vectors

⇒

And,

Given,

= I

Hence,

AA^{T} = I

I think you got complete solutions for this chapter. If You have any queries regarding this chapter, please comment in the below section our subject teacher will answer you. We tried our best to give complete solutions so you got good marks in your exam.

If these solutions have helped you, you can also share rdsharmasolutions.in to your friends.