Here we provide RD Sharma Class 12 Ex 3.3 Solutions Chapter 3 Binary Operations for English medium students, Which will very helpful for every student in their exams. Students can download the latest RD Sharma Class 12 Ex 3.3 Solutions Chapter 3 Binary Operations book pdf download. Now you will get step-by-step solutions to each question.

Textbook | NCERT |

Class | Class 12th |

Subject | Maths |

Chapter | 3 |

Exercise | 3.3 |

Category | RD Sharma Solutions |

Table of Contents

**Question 1. Let * be a binary operation on Z defined by a * b = a + b – 4 for all a, b ∈ Z.**

**(i) Show that * is both commutative and associative.**

**(ii) Find the identity element in Z**

**(iii) Find the invertible element in Z. **

**Solution:**

(i)First we will prove commutativity of *

Let a, b ∈ Z.

a * b = a + b – 4

= b + a – 4

= b * a⇒ a * b = b * a, ∀ a, b ∈ Z

So we can say that, * is commutative on Z.Now we will prove associativity of Z.

Let a, b, c ∈ Z.

a * (b * c) = a * (b + c – 4)

= a + b + c -4 – 4

= a + b + c – 8

⇒ (a * b) * c = (a + b – 4) * c

= a + b – 4 + c – 4

= a + b + c – 8⇒ a * (b * c) = (a * b) * c, for all a, b, c ∈ Z

So we can say that, * is associative on Z.

(ii)We have to find identity element in Z.

Let x be the identity element in Z with respect to * such that

a * x = a = x * a ∀ a ∈ Z

a * x = a and x * a = a, ∀ a ∈ Z

a + x – 4 = a and x + a – 4 = a, ∀ a ∈ Z

x = 4, ∀ a ∈ Z

So we can say that, 4 is the identity element in Z with respect to *.

(iii)We have to find the invertible element in Z.

Let a ∈ Z and b ∈ Z be the inverse of a. So,

a * b = x = b * a

a * b = x and b * a = x

a + b – 4 = 4 and b + a – 4 = 4

b = 8 – a ∈ Z

So we can say that, 8 – a is the inverse of a ∈ Z

**Question 2. Let * be a binary operation on Q**_{0} (set of non-zero rational numbers) defined by a * b= (3ab/5) for all a, b ∈ Q_{0}. Show that * is commutative as well as associative. Also, find its identity element, if it exists.

_{0}(set of non-zero rational numbers) defined by a * b= (3ab/5) for all a, b ∈ Q

_{0}. Show that * is commutative as well as associative. Also, find its identity element, if it exists.

**Solution:**

Firstly we will prove commutativity of *

Let a, b ∈ Q_{0}

a * b = (3ab/5)

= (3ba/5)

= b * a

⇒ a * b = b * a, for all a, b ∈ Q_{0.}Now we will prove associativity of *

Let a, b, c ∈ Q_{0}

a * (b * c) = a * (3bc/5)

= [a (3 bc/5)] /5

= 3 abc/25

(a * b) * c = (3 ab/5) * c

= [(3 ab/5) c]/ 5

= 3 abc /25

⇒ a * (b * c) = (a * b) * c, for all a, b, c ∈ Q0

So we can say that * is associative on Q_{0}.Now we will find the identity element.

Let x be the identity element in Z with respect to * such that

a * x = a = x * a ∀ a ∈ Q_{0}

a * x = a and x * a = a, ∀ a ∈ Q_{0}

3ax/5 = a and 3xa/5 = a, ∀ a ∈ Q_{0}

x = 5/3 ∀ a ∈ Q_{0}[a ≠ 0]

So we can say that, 5/3 is the identity element in Q_{0}with respect to *.

**Question** **3. Let * be a binary operation on Q – {-1} defined by a * b = a + b + ab for all a, b ∈ Q – {-1}. Then,**

**(i) Show that * is both commutative and associative on Q – {-1}**

**(ii) Find the identity element in Q – {-1}**

**(iii) Show that every element of Q – {-1} is invertible. Also, find inverse of an arbitrary element.**

**Solution:**

(i)First we will check commutativity of *

Let us assume that a, b ∈ Q – {-1}

a * b = a + b + ab

= b + a + ba

= b * a

⇒

a * b = b * a, ∀ a, b ∈ Q – {-1}Now we will prove associativity of *

Let us assume that a, b, c ∈ Q – {-1}, Then,

a * (b * c) = a * (b + c + b c)

= a + (b + c + b c) + a (b + c + b c)

= a + b + c + b c + a b + a c + a b c

= (a * b) * c = (a + b + a b) * c

= a + b + a b + c + (a + b + a b) c

= a + b + a b + c + a c + b c + a b c

⇒ a * (b * c) = (a * b) * c, ∀ a, b, c ∈ Q – {-1}

So we can say that, * is associative on Q – {-1}

(ii)Let us assume that x be the identity element in I+ with respect to * such that

a * x = a = x * a, ∀ a ∈ Q – {-1}

a * x = a and x * a = a, ∀ a ∈ Q – {-1}

a + x + ax = a and x + a + xa = a, ∀ a ∈ Q – {-1}

x + ax = 0 and x + xa = 0, ∀ a ∈ Q – {-1}

x (1 + a) = 0 and x (1 + a) = 0, ∀ a ∈ Q – {-1}

x = 0, ∀ a ∈ Q – {-1} [a ≠ -1]

so we can say that , 0 is the identity element in Q – {-1} with respect to *.

(iii)Let us assume that a ∈ Q – {-1} and b ∈ Q – {-1} be the inverse of a. Then,

a * b = e = b * a

a * b = e and b * a = e

a + b + ab = 0 and b + a + ba = 0

b (1 + a) = – a Q – {-1}

b = -a/1 + a Q – {-1} [a ≠ -1]

So we can say that, -a/1 + a is the inverse of a ∈ Q – {-1}.

**Question 4. Let A = R**_{0} × R, where R_{0} denote the set of all non-zero real numbers. A binary operation ‘O’ is defined on A as follows: (a, b) O (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R_{0} × R.

_{0}× R, where R

_{0}denote the set of all non-zero real numbers. A binary operation ‘O’ is defined on A as follows: (a, b) O (c, d) = (ac, bc + d) for all (a, b), (c, d) ∈ R

_{0}× R.

**(i) Show that ‘O’ is commutative and associative on A**

**(ii) Find the identity element in A**

**(iii) Find the invertible element in A**

**Solution:**

(i)Let us assume that X = (a, b) and Y = (c, d) ∈ A, ∀ a, c ∈ R_{0}and b, d ∈ R

X O Y = (ac, bc + d)

Y O X = (ca, da + b)

⇒ X O Y = Y O X, ∀ X, Y ∈ A

⇒ O commutative on A.Now we have to check associativity of O

Let X = (a, b), Y = (c, d) and Z = (e, f), ∀ a, c, e ∈ R0 and b, d, f ∈ R

⇒X O (Y O Z) = (a, b) O (ce, de + f)

= (ace, bce + de + f)

⇒ (X O Y) O Z = (ac, bc + d) O (e, f)

= (ace, (bc + d) e + f)

= (ace, bce + de + f)

⇒ X O (Y O Z) = (X O Y) O Z, ∀ X, Y, Z ∈ A

(ii)Let us assume that E = (x, y) be the identity element in A with respect to O, ∀ x ∈ R_{0}and y ∈ R

X O E = X = E O X, ∀ X ∈ A

X O E = X and EOX = X

⇒(ax, bx +y) = (a, b) and (xa, ya + b) = (a, b)

We know that , (ax, bx + y) = (a, b)

ax = a

x = 1

bx + y = b

y = 0 [x = 1]

we know that, (xa, ya + b) = (a, b)

xa = a

x = 1

ya + b = b

y = 0 [since x = 1]

So we can say that (1, 0) is the identity element in A with respect to O.

(iii)Let us assume that F = (m, n) be the inverse in A ∀ m ∈ R_{0}and n ∈ R

X O F = E and F O X = E

(am, bm + n) = (1, 0) and (ma, na + b) = (1, 0)

As we know that (am, bm + n) = (1, 0)

am = 1

m = 1/a

bm + n = 0

n = -b/a [m = 1/a]

We know that (ma, na + b) = (1, 0)

ma = 1

m = 1/a

na + b = 0

n = -b/a

So we can say that, the inverse of (a, b) ∈ A with respect to O is (1/a, -1/a).

**Question 5. Let ‘*’ be a binary operation on the set of Q**_{0} of all non zero rational numbers defined by a * b = ab/2 for all a, b ∈ Q_{0}

_{0}of all non zero rational numbers defined by a * b = ab/2 for all a, b ∈ Q

_{0}

**(i) show that ‘*’ is both commutative and associative.**

**(ii) Find the identity element in Q _{0 }.**

**(iii) Find the invertible element of Q _{0}.**

**Solution:**

(i)We have to show,‘*’ is commutative.

Let a, b ∈ Q_{0}.

a o b = ab/2 = ba/2

⇒ b o a

⇒ a o b = b o a, ∀ a, b ∈ Q_{0}.

So, o is commutative on Q_{0.}Now, we will show, ‘*’ is Associative.

Let a, b, c ∈ Q_{0}

a o (b 0 c) = a o (bc/2)

= (a(bc/2))/2

= abc /4

⇒ (a o b) o c = (ab/2) o c

= abc/4

⇒ a o (b o c) = (a o b) o c ∀ a, b, c ∈ Q_{0.}

So, we can say that o is associative on Q_{0.}

(ii)Let x be the identify element in Q_{0 }with respect to * such that

a o x = a x o a ,∀ a ∈ Q_{0}

⇒ ax /2 = a and xa /2 = a, ∀ a ∈ Q_{0}

x = 2 ∈ Q_{0,}∀ a ∈_{ }Q_{0 }

So, we can say that, 2 is the identity element in Q_{0}with respect to o.

(iii)Let us assume that a ∈ Q_{0}and b ∈ Q_{0}be the inverse of a.

⇒ a o b = e = b o a = e

⇒ ab/2 = 2 and ba/2 = 2

⇒ b = 4/a ∈ Q_{0}

So, we can say that, 4/a is the inverse of a∈ Q_{0}.

**Question 6. On R -{1}, a binary operation * is defined by a*b = a+b-ab . Prove that * is commutative and associative. Find the identity element for * on R-{1}. Also**,** prove that every element of R-{1} is invertible.**

**Solution:**

Firstly we will find commutative.

Let us assume that a, b ∈ R -{1}

a * b = a + b – ab

= b + a -ba

= b*a

⇒ a * b = b + a ,∀ a , b ∈ R – {1}

So , we can say that * is commutative on R-{1}Now , we will find Associative.

Let assume that a , b , c ∈ R – {1}

a * (b * c ) = a * (b + c – bc)

=a + b + c – bc -a(b + c – bc)

=a + b + c – bc – ab – ac + abc

(a * b) * c = (a + b – ab ) * c

= a + b – ab + c – (a + b – ab)c

= a + b + c – ab – ac – bc + abc

⇒ a * (b * c) = (a * c )* c , ∀ a , b , c ∈ R – {1}

So we can say that , * is associative on R-{1}Now we will find identity element.

Let assume that x be the identity element in R-{1} with respect to *

a * x = a = x * a , ∀ a ∈ R-{1}

a * x = a and x * a = a, ∀ a ∈ R-{1}

⇒ a + x – ax = a and x + a – xa = a , ∀ a ∈ R-{1}

x(1 – a) = 0 , ∀ a ∈ R-{1}

⇒ x = 0 [ a ≠ 1 ⇒ 1 – a ≠ 0 ]

So we can say that , x = 0 will be the identity element with respect to * .Now lets find inverse element.

Let’s assume that b ∈ R-{1} be the inverse element of a ∈ R-{1}

a * b = b * a = x

⇒ a + b -ab = 0 [e=0]

⇒b(1 – a) = -a

⇒ b = -a /(1 – a) ≠ 1 [ if -a/(1-a) = 1 ⇒ -a = 1 – a ⇒ 1≠ 0]

So we can say that , b = -a/(1 – a) is the inverse of a ∈ R-{1} with respect to *.

**Question 7.Let R**_{0} denote the set of all non zero real number and let A = R_{0} x R_{0} . If ‘*’ is a binary operation on A defined by ( a, b) * (c ,d) = (ac , bd) for all (a , b)(c , d) ∈ A.

_{0}denote the set of all non zero real number and let A = R

_{0}x R

_{0}. If ‘*’ is a binary operation on A defined by ( a, b) * (c ,d) = (ac , bd) for all (a , b)(c , d) ∈ A.

**(i) Show that ‘*’ is both commutative and associative on A.**

**(ii) Find the identity element in A.**

**(iii) Find the invertible element in A.**

**Solution:**

In the question we have given (a, b) * (c ,d) = (ac , bd) for all (a,b)(c,d) ∈ A.

(i) Let us assume that , (a,b)(c,d) ∈ A. So,

(a, b) * (c ,d) = (ac , bd)

=(ca , bd) [ ac = ca and bd = db ]

=(c , d)*(a , b)

⇒ (a, b) * (c,d) = (ac,bd)

So we can say that , ‘*’ is commutative on A.⇒ Now we will find associativity on A.

Let us assume that , (a,b),(c,d),(e,f) ∈ A.

⇒ ((a,b)*(c,d))*(e,f) = (ac , bd)*(e,f)

=(ace , bdf) –(i)

Now (a,b)*((c,d)*(e,f)) =(a,b)*(ce,df)

=(ace , bdf) –(ii)

From equation (i) and (ii).

((a,b)*(c,d))*(e,f) = (a,b)*((c,d)*(e,f))

So we can say that , ‘*’ is associative on A.(ii) Let find identity element in A.

Let assume that (x,y) ∈ A be the identity element with respect to *.

(a,b) * (x,y) = (x,y)*(a,b) = (a,b) for all (a,b) ∈ A.

⇒ (ax , by) = (a,b)

⇒ ax = a & by = b

⇒ x = 1 & y = 1

So we can say that (1,1) will be identity element.(iii) Now we will find invertible element in A.

Let assume that (c,d) ∈ A be the inverse of (a,b) ∈ A

(a,b)*(c,d) = (c,d)*(a,b) = x

(ac , bd) = (1,1) [e = (1,1) ]

ac = 1 & bd = 1

c = 1/a & d = 1/b

So we can say that (1/a ,1/b) will be the inverse of (a,b) with respect to *.

**Question 8. Let * be the binary operation on N defined by a*b = H.C.F of a and b. **

**Is * commutative? Is * associative? Does there exist identity for this binary operation on N?**

**Solution:**

The binary operation * on N can be defined as:

a*b = H.C.F of a and b

And we also know that , HCF(a,b) = HCF(b,a) . a,b ∈ N.

So we can say that , a * b = b * a

So , the operation * is commutative.For a,b,c ∈ N. So we have.

(a * b) * c = (HCF(a,b))*c = HCF(a,b,c)

a * (b * c) = a * (HCF(a,b)) = HCF(a,b,c)

So it can be said that (a * b) * c = a * (b * c)

So we can say that , the operation * is associative.Now , an element e ∈ N will be the identity for the operation.

* if a * e = a = e * a ,∀ a ∈ N.

But we can say that , this relation is not true for any a ∈ N.

So we can say that , the operation * does not have any identity in N.

I think you got complete solutions for this chapter. If You have any queries regarding this chapter, please comment in the below section our subject teacher will answer you. We tried our best to give complete solutions so you got good marks in your exam.

If these solutions have helped you, you can also share rdsharmasolutions.in to your friends