Here we provide RD Sharma Class 12 Ex 19.32 Solutions Chapter 19 Indefinite Integrals for English medium students, Which will very helpful for every student in their exams. Students can download the latest Sharma Class 12 Ex 19.32 Solutions Chapter 19 Indefinite Integrals book pdf download. Now you will get step-by-step solutions to each question.
Textbook | NCERT |
Class | Class 12th |
Subject | Maths |
Chapter | 19 |
Exercise | 19.32 |
Category | RD Sharma Solutions |
RD Sharma Class 12 Ex 19.32 Solutions Chapter 19 Indefinite Integrals
Question 1. ∫1/[(x − 1)√(x + 2)]dx
Solution:
We have,
∫1/[(x − 1)√(x + 2)]dx
Let x + 2 = t2, so we get, xdx = 2tdt
So, the equation becomes,
= ∫2t/(t2 − 3)(t)dt
= 2∫dt/(t2 − 3)
= (2/2√3) log |(t − √3)/(t + √3)| + c
= (1/√3) log |(√(x − 2) − √3)/(√(x − 2) + √3)| + c
Question 2. ∫1/[(x − 1)√(2x + 3)]dx
Solution:
We have,
∫1/[(x − 1)√(2x + 3)]dx
Let 2x + 3 = t2, so we have, 2dx = 2tdt,
=> dx = tdt
So, the equation becomes,
= ∫t/[(t2 − 3 − 2)/2](t)dt
= 2∫dt/(t2 − 5)
= (2/2√5) log |(t − √5)/(t + √5)| + c
= (1/√5) log |(√(2x + 3) − √5)/(√(2x + 3) + √5)| + c
Question 3. ∫(x + 1)/[(x − 1)√(x + 2)]dx
Solution:
We have,
∫(x + 1)/[(x − 1)√(x + 2)]dx
= ∫(x − 1 + 2)/[(x − 1)√(x + 2)]dx
= ∫(x − 1)/[(x − 1)√(x + 2)]dx + ∫2/[(x − 1)√(x + 2)]dx
= ∫(dx/√(x + 2)] + 2∫dx/[(x − 1)√(x + 2)]
In second part, let x + 2 = t2, so we get, xdx = 2tdt
So, the equation becomes,
= ∫(dx/√(x + 2)] + ∫2t/(t2 − 3)(t)dt
= ∫(dx/√(x + 2)] + 2∫dt/(t2 − 3)
= 2√(x + 2) + c1 + (4/2√3) log |(t − √3)/(t + √3)| + c2
= 2√(x + 2) + (2/√3) log |(√(x − 2) − √3)/(√(x − 2)+√3)| + c
Question 4. ∫x2/[(x − 1)√(x + 2)]dx
Solution:
We have,
∫x2/[(x − 1)√(x + 2)]dx
= ∫(x2 − 1 + 1)/[(x − 1)√(x + 2)]dx
= ∫(x − 1)(x + 1)/[(x − 1)√(x + 2)]dx + ∫dx/[(x − 1)√(x + 2)]
= ∫(x + 1)/[√(x + 2)]dx + ∫dx/[(x − 1)√(x + 2)]
= ∫[(x + 2) − 1]/[√(x + 2)]dx + ∫dx/[(x − 1)√(x + 2)]
= ∫√(x + 2)dx − ∫dx/[√(x + 2)] + ∫dx/[(x − 1)√(x + 2)]
In third part, let x + 2 = t2, so we get, xdx = 2tdt
So, the equation becomes,
= ∫√(x + 2)dx − ∫dx/[√(x + 2)] + ∫2t/(t2 − 3)(t)dt
= ∫√(x + 2)dx − ∫dx/[√(x + 2)] + 2∫dt/(t2 − 3)
= (2/3)(x + 2)3/2 + c1 − 2√(x + 2) + c2 + (2/2√3) log |(t − √3)/(t + √3)| + c3
= (2/3)(x + 2)3/2 − 2√(x + 2) + (1/√3) log |(√(x − 2) − √3)/(√(x − 2) + √3)| + c
Question 5. ∫x/[(x − 3)√(x + 1)]dx
Solution:
We have,
∫x/[(x − 3)√(x + 1)]dx
= ∫[(x − 3) + 3]/[(x − 3)√(x + 1)]dx
= ∫dx/[√(x + 1)] + 3∫dx/[(x − 3)√(x + 1)]
For second part, let x + 1 = t2, so we get, dx = 2tdt.
So, the equation becomes,
= ∫dx/[√(x + 1)] + 3∫2tdt/[(t2 − 4)(t)]
= 2√(x + 1) + c1 + (3/2) log |(t − 2)/(t + 2)| + c2
= 2√(x + 1) + (3/2) log |(√(x + 1) − 2)/(√(x + 1) + 2)| + c
Question 6. ∫1/[(x2 + 1)√x]dx
Solution:
We have,
∫1/[(x2 + 1)√x]dx
Let x = t2, so we have, dx = 2tdt
So, the equation becomes,
= 2∫t/[(t4 + 1)(t)]dt
= 2∫dt/(t4 + 1)
= 2∫(t/t2)/(t2 + 1/t2)dt
= ∫[1 + 1/t2 − (1 − 1/t2)]/(t2 + 1/t2)dt
= ∫(1 + 1/t2)/[(t − 1/t)2 + 2]dt − ∫(1 − 1/t2)/[(t + 1/t)2 − 2]dt
Let t − 1/t = y, so we have, (1 + 1/t2)dt = dy
Let t + 1/t = z, so we have, (1 − 1/t2)dt = dz
So, the equation becomes,
= ∫dy/(y2 +2) − ∫dz/(z2 − 2)
= (1/√2) tan−1(y/√2) − (1/2√2) log |(z − √2)/(z + √2)| + c
= (1/√2) tan−1[(t2−1)/√2t] − (1/2√2) log |[x + 1 − √(2x)]/[x + 1 + √(2x)]| + c
= (1/√2) tan−1[(x−1)/√(2x)] − (1/2√2) log |[x + 1 − √(2x)]/[x + 1 + √(2x)]| + c
Question 7. ∫x/[(x2 + 2x + 2)√(x + 1)]dx
Solution:
We have,
∫x/[(x2 + 2x + 2)√(x + 1)]dx
Let x + 1 = t2, so we have, dx = 2tdt
So, the equation becomes,
= 2∫(t2 − 1)(t)/[(t4 + 1)(t)]dt
= 2∫(t2 − 1)/(t4 + 1)dt
= 2∫(1 − 1/t2)/[(t + 1/t)2 − 2]dt
Let t + 1/t = y, so we have, (1 − 1/t2)dt = dy
So, the equation becomes,
= 2∫dy/(y2 − 2)
= (2/2√2) log |(y − √2)/(y + √2)| + c
= (1/√2) log |(t2 + 1 − √2t)/(t2 + 1 + √2t)| + c
= (1/√2) log |[x + 2 − √(2x + 2)]/[x + 2 + √(2x + 2)]| + c
Question 8. ∫1/[(x − 1)√(x2 + 1)]dx
Solution:
We have,
∫1/[(x − 1)√(x2 + 1)]dx
Let x − 1 = 1/t, so we have dx = (−1/t2)dt
So, the equation becomes,
= −∫(1/t2)/[(1/t)√[(1 + 1/t)2 + 1]]dt
= −∫dt/√(2t2 + 2t + 1)
= −(1/√2)∫dt/√(t2 + t + 1/2)
= −(1/√2)∫dt/√[(t + 1/2)2 + 1/4]
= −(1/√2) log |(t + 1/2) + √[(t + 1/2)2 + 1/4]| + c
= −(1/√2) log |(1/(x − 1) + 1/2) + √[(1/(x−1) + 1/2)2 + 1/4]| + c
Question 9. ∫1/[(x + 1)√(x2 + x + 1)]dx
Solution:
We have,
∫1/[(x + 1)√(x2 + x + 1)]dx
Let x + 1 = 1/t, so we have dx = (−1/t2)dt
So, the equation becomes,
= −∫(1/t2)/[(1/t)√(1/t2 + 1/t − 1)]dt
= −∫dt/√(1 + t − t2)
= −∫dt/√[5/4 − (1/4 − t + t2)]
= −∫dt/√[5/4 − (t − 1/2)2]
= − sin−1[(t − 1/2)/(√5/2)] + c
= − sin−1[(2t − 1)/√5] + c
= − sin−1[(1 − x)/[√5(x + 1)]] + c
Question 10. ∫1/[(x2 − 1)√(x2 + 1)]dx
Solution:
We have,
∫1/[(x2 − 1)√(x2 + 1)]dx
Let x = 1/t, so we get, dx = (−1/t2)dt
So, the equation becomes,
= −∫(1/t2)/[(1/t2 − 1)√(1/t2 + 1)]dt
= −∫t/[(1 − t2)√(1 + t2)]dt
Let 1 + t2 = y2, so we have, 2tdt = 2ydy
=> tdt = ydy
So, the equation becomes,
= ∫ydy/(y2 − 2)y
= ∫dy/(y2 − 2)
= (1/2√2) log |(y − √2)/(y + √2)| + c
= (1/2√2) log |(y − √2)/(y + √2)| + c
= (1/2√2) log |[√(1 + t2) − √2]/[√(1 + t2) + √2]| + c
= −(1/2√2) log |[√2x + √(x2 + 1)]/[√2x − √(x2 + 1)]| + c
Question 11. ∫x/[(x2 + 4)√(x2 + 1)]dx
Solution:
We have,
∫x/[(x2 + 4)√(x2 + 1)]dx
Let x2 + 1 = t2, so we get, 2xdx = 2tdt
=> xdx = tdt
So, the equation becomes,
= ∫t/(t2 + 3)(t)dt
= ∫dt/(t2 + 3)
= (1/√3) tan−1(t/√3) + c
= (1/√3) tan−1[√(x2 + 1)/√3] + c
Question 12. ∫1/[(1 + x2)√(1 − x2)]dx
Solution:
We have,
∫1/[(1 + x2)√(1 − x2)]dx
Let x = 1/t, so we get, dx = (−1/t2)dt
So, the equation becomes,
= −∫(1/t2)/[(1/t2 + 1)√(1 − 1/t2)]dt
= −∫t/[(t2 + 1)√(t2 − 1)]dt
Let t2 − 1 = y2, so we get, 2tdt = 2ydy
=> tdt = ydy
So, the equation becomes,
= −∫y/[(y2 + 2)(y)]dy
= −∫1/(y2 + 2)dy
= −(1/√2) tan−1(y/√2) + c
= −(1/√2) tan−1(√(t2 − 1)/√2) + c
= −(1/√2) tan−1(√(1 − x2)/√2x) + c
Question 13. ∫1/[(2x2 + 3)√(x2 − 4)]dx
Solution:
We have,
∫1/[(2x2 + 3)√(x2 − 4)]dx
Let x = 1/t, so we have dx = (−1/t2)dt
So, the equation becomes,
= −∫(1/t2)/[(2/t2 + 3)√(1/t2 − 4)]dt
= −∫t/[(2 + 3t2)√(1−4t2)]dt
Let 1 − 4t2 = y2, so we get, −8tdt = 2ydy
So, the equation becomes,
= (1/4) ∫y/[(11 − 3y2)y/4]dy
= (1/3) ∫1/(11/3 − y2)dy
= (1/2√33) log |[y − √(11/3)]/[y + √(11/3)]| + c
= (1/2√33) log |[√(1 − 4t2) − √(11/3)]/[√(1 + 4t2) + √(11/3)]| + c
= (1/2√33) log |[√(11x) + √(3x2 − 12)]/[√(11x) − √(3x2 − 12)]| + c
Question 14. ∫x/[(x2 + 4)√(x2 + 9)]dx
Solution:
We have,
∫x/[(x2 + 4)√(x2 + 9)]dx
Let x2 + 9 = y2, so we have 2xdx = 2ydy
=> xdx = ydy
So, the equation becomes,
= ∫y/[(y2 − 5)y]dy
= ∫1/(y2 − 5)dy
= (1/2√5) log |(y − √5)/(y + √5)| + c
= (1/2√5) log |(√(x2 + 9) − √5)/(√(x2 + 9) + √5)| + c
I think you got complete solutions for this chapter. If You have any queries regarding this chapter, please comment in the below section our subject teacher will answer you. We tried our best to give complete solutions so you got good marks in your exam.
If these solutions have helped you, you can also share rdsharmasolutions.in to your friends.