RD Sharma Class 12 Ex 19.18 Solutions Chapter 19 Indefinite Integrals

Here we provide RD Sharma Class 12 Ex 19.18 Solutions Chapter 19 Indefinite Integrals for English medium students, Which will very helpful for every student in their exams. Students can download the latest Sharma Class 12 Ex 19.18 Solutions Chapter 19 Indefinite Integrals book pdf download. Now you will get step-by-step solutions to each question.

TextbookNCERT
ClassClass 12th
SubjectMaths
Chapter19
Exercise19.18
CategoryRD Sharma Solutions

RD Sharma Class 12 Ex 19.18 Solutions Chapter 19 Indefinite

Question 1. Evaluate ∫ x/ √x4+a4 dx

Solution:

Let us assume I = ∫ x/ √x4+a4 dx

= ∫ x/ √(x2)2+(a2)2 dx (i)

Put x= t

2x dx = dt

x dx = dt/2

Put the above value in eq. (i)

= 1/2 ∫ dt/√t2 +(a2)

Integrate the above eq. then, we get

= 1/2 log |t+ √t2+(a2)2| + c [since ∫ 1/√x2+a2 dx = log|x +√x2+a2| + c]

= 1/2 log |x2+ √(x2)2+(a2)2| + c

Hence, I = 1/2 log |x2+ √x4+a4| + c

Question 2. Evaluate ∫ sec2x/ √tan2x+4 dx

Solution:

Let us assume I =∫ sec2x/ √tan2x+4 dx (i)

Put tan x = t

sec2x dx = dt

Put the above value in eq. (i)

= ∫ dt/ √t2+(2)2

Integrate the above eq. then, we get

= log|t +√t2+(2)2| + c [since ∫ 1/√x2+a2 dx =log|x +√x2+a2| + c]

= log|tanx +√tan2x+(2)2| + c

Hence, I = log|tanx +√tan2x+4| + c

Question 3. Evaluate ∫ ex/ √16-e2x dx

Solution:

Let us assume I =∫ ex/ √16-e2x dx (i)

Put ex = t

ex dx = dt

Put the above value in eq. (i)

= ∫ dt/ √(4)2-(e)2

Integrate the above eq. then, we get

= sin-1(t/4) + c [since ∫1/ √a2 – x2 dx = sin-1(x/a) + c]

= sin-1(ex/4) + c

Hence, I = sin-1(ex/4) + c

Question 4. Evaluate ∫ cosx/√4+sin2x dx

Solution:

Let us assume I =∫ cosx/ √4+sin2x dx (i)

Put sinx = t

cosx dx = dt

Put the above value in eq. (i)

= ∫ dt/ √(2)2+t2

Integrate the above eq. then, we get

= log|t +√(2)2+t2| + c [since ∫ 1/√x2+a2 dx =log|x +√x2+a2| + c]

= log|sinx +√(2)2+sin2x| + c

Hence, I = log|sinx +√4+sin2x| + c

Question 5. Evaluate ∫ sinx/ √4cos2x-1 dx

Solution:

Let us assume I =∫ sinx/ √4cos2x-1 dx (i)

Put 2cosx = t

-2sinx dx = dt

sinx dx = -dt/2

Put the above value in eq. (i)

= -1/2 ∫ dt/ √t2-(1)2

Integrate the above eq. then, we get

= -1/2 log|t +√t2-(1)2| + c [since ∫ 1/√x2-a2 dx =log|x +√x2-a2| + c]

= -1/2 log|2cosx +√(2cosx)2-(1)2| + c

Hence, I = -1/2 log|2cosx +√4cos2x-1| + c

Question 6. Evaluate ∫ x/ √4-x4 dx

Solution:

Let us assume I =∫ x/ √4-x4 dx (i)

Put x2 = t

2x dx = dt

x dx = dt/2

Put the above value in eq. (i)

=1/2 ∫ dt/ √(2)2-(t)2

Integrate the above eq. then, we get

= sin-1(t/2) + c [ since ∫1/ √a2 – x2 dx = sin-1(x/a) + c]

= sin-1(x2/2) + c

Hence, I = sin-1(x2/2) + c

Question 7. Evaluate ∫ 1/ x√4-9(logx)2 dx

Solution:

Let us assume I =∫ 1/ x√4-9(logx)2 dx

=∫ 1/ x√4-(3logx)2 dx (i)

Put 3logx = t

3/x dx = dt

1/x dx = dt/3

Put the above value in eq. (i)

=1/3 ∫ dt/ √4-t2

=1/3 ∫ dt/ √(2)2-t2

Integrate the above eq. then, we get

=1/3 sin-1(t/2) + c [since ∫1/ √a2 – x2 dx = sin-1(x/a) + c]

=1/3 sin-1(3logx/2) + c

Hence, I =1/3 sin-1(3logx/2) + c

Question 8. Evaluate ∫ sin8x/ √9+sin44x dx

Solution:

Let us assume I =∫ sin8x/ √9+sin44x dx (i)

Put sin24x = t

2sin4xcos4x (4)dx = dt

4sin8x dx = dt

sin8x dx = dt/4

Put the above value in eq. (i)

= 1/4 ∫ dt/ √9+t2

= 1/4 ∫ dt/ √(3)2+t2

Integrate the above eq. then, we get

= 1/4 log|t +√(3)2+t2| + c [since ∫ 1/√a2+x2 dx =log|x +√a2+x2| + c]

= 1/4 log|sin44x +√(3)2+sin44x| + c

Hence, I = 1/4 log|sin24x +√9+sin44x| + c

Question 9. Evaluate ∫ cos2x/ √sin22x+8 dx

Solution:

Let us assume I =∫ cos2x/ √sin22x+8 dx (i)

Put sin2x = t

2cos2x dx = dt

cos2x dx = dt/2

Put the above value in eq. (i)

=1/2 ∫ dt/ √t2+8

=1/2 ∫ dt/ √t2+(2√2)2

Integrate the above eq. then, we get

= 1/2 log|t +√t2+(2√2)2| + c [since ∫ 1/√x2+a2 dx =log|x +√x2+a2| + c]

= 1/2 log|sin2x +√sin22x+(2√2)2| + c

Hence, I = 1/2 log|sin2x +√sin22x+8| + c

Question 10. Evaluate ∫ sin2x/ √sin4x+4sin2x-2 dx

Solution:

Let us assume I =∫ sin2x/ √sin4x+4sin2x-2 dx (i)

Put sin2x = t

2sinxcosx dx = dt

sin2x dx = dt

Put the above value in eq. (i)

= ∫ dt/ √t2+4t-2

= ∫ dt/ √t2+2t(2)+(2)2-(2)2-2

= ∫ dt/ √(t+2)2-6 (ii)

Put t+2 =u

dt = du

Put the above value in eq. (ii)

= ∫ du/ √u2-6

= ∫ du/ √u2-(√6)2

Integrate the above eq. then, we get

= log|u +√u2-(√6)2| + c [since ∫ 1/√x2-a2 dx =log|x +√x2-a2| + c]

= log|t+2 +√(t+2)2-6| + c

= log|sin2x+2 +√(sin2x+2)2-6| + c

= log|sin2x+2 +√sin4x+4sin2x+4-6| + c

Hence, I = log|sin2x+2 +√sin4x+4sin2x-2| + c

Question 11. Evaluate ∫ sin2x/ √cos4x-sin2x+2 dx

Solution:

Let us assume I =∫ sin2x/ √cos4x-sin2x+2 dx

=∫sin2x/ √cos4x-(1-cos2x)+2 dx (i)

Put cos2x = t

-2sinxcosx dx = dt

sin2x dx = -dt

Put the above value in eq. (i)

= -∫ dt/ √t2-(1-t)+2

= -∫ dt/ √t2-1+t+2

= -∫ dt/ √t2+t+1

= -∫ dt/ √t2+t+(1/4)+(3/4)

= -∫ dt/ √(t+1/2)2+ 3/4 (ii)

Put t+1/2 =u

dt = du

Put the above value in eq. (ii)

= -∫ du/ √u2+ 3/4

= -∫ du/ √u2+3/4

Integrate the above eq. then, we get

= -log|u +√u2+3/4| + c [since ∫ 1/√x2+a2 dx =log|x +√x2+a2| + c]

= -log|t+1/2 +√(t+1/2)2+3/4| + c

= -log|t+1/2 +√(t2+t+1)| + c

= -log|(cos2x+1/2) +√(cos4x+cos2x+1| + c

Hence, I = -log|(cos2x+1/2) +√(cos4x+cos2x+1| + c

Question 12. Evaluate ∫ cosx/ √4-sin2x dx

Solution:

Let us assume I =∫ cosx/ √4-sin2x dx (i)

Put sinx = t

cosx dx = dt

Put the above value in eq. (i)

= ∫ dt/ √(2)2-(t)2

Integrate the above eq. then, we get

= sin-1(t/2) + c [since ∫1/ √a2 – x2 dx = sin-1(x/a) + c]

= sin-1(sinx/2) + c

Hence, I = sin-1(sinx/2) + c

Question 13. Evaluate ∫ 1/ x2/3√x2/3-4 dx

Solution:

Let us assume I =∫ 1/ x2/3√x2/3-4 dx (i)

Put x1/3 = t

(1/3) x1/3-1 dx = dt

(1/3) x-2/3 dx = dt

dx/ x2/3 = 3dt

Put the above value in eq. (i)

= 3 ∫ dt/ √t2-(2)2

Integrate the above eq. then, we get

= 3 log|t +√t2-(2)2| + c [since ∫ 1/√x2-a2 dx =log|x +√x2-a2| + c]

= 3 log|x1/3 +√(x1/3)2-(2)2| + c

Hence, I = 3 log|x1/3 +√x2/3– 4| + c

Question 14. Evaluate ∫ 1/ √(1-x2)[9+(sin-1x)2 dx

Solution:

Let us assume I =∫ 1/ √(1-x2)[9+(sin-1x)2 dx (i)

Put sin-1x = t

dx/√1-x2 = dt

Put the above value in eq. (i)

= ∫ dt/ √(3)+ t

Integrate the above eq. then, we get

= log|t +√(3)2+t2| + c [since ∫ 1/√a2+x2 dx =log|x +√a2+x2| + c]

= log|sin-1x +√(3)2+(sin-1x)2| + c

Hence, I = log|sin-1x +√9+(sin-1x)2| + c

Question 15. Evaluate ∫ cosx/ √sin2x-2sinx-3 dx

Solution:

Let us assume I =∫ cosx/ √sin2x-2sinx-3 dx (i)

Put sinx = t

cosx dx = dt

Put the above value in eq. (i)

= ∫ dt/ √t2-2t-3

= ∫ dt/ √t2-2t+(1)2-(1)2-3

= ∫ dt/ √(t-1)2-(2)3 (ii)

Put t-1 =u

dt = du

Put the above value in eq. (ii)

= ∫ du/ √u2-(2)2

Integrate the above eq. then, we get

= log|u +√u2-(2)2| + c [since ∫1/√x2-a2 dx =log|x +√x2-a2| + c]

= log|t-1 +√(t-1)2-4| + c

= log|t-1 +√t2-2t+1-4| + c

= log|t-1 +√t2-2t-3| + c

= log|sinx-1 +√sin2x-2sinx-3| + c

Hence, I = log|sinx-1 +√sin2x-2sinx-3| + c

Question 16. Evaluate ∫ √cosecx-1 dx

Solution:

Let us assume I =∫ √cosecx-1 dx

= ∫ √1/sinx -1 dx

=∫ √1-sinx /sinx dx

=∫ √(1-sinx)+(1 + sinx) /(1+sinx)sinx dx

=∫ √(1+sinx-sinx-sin2x) /sin2x+sinx dx

=∫ √cos2x /sin2x+sinx dx

=∫ cosx /√sin2x+sinx dx (i)

Let sinx = t

cosx dx = dt

Put the above value in eq. (i)

= ∫ dt/√t2+t

= ∫ dt/√t2+2t(1/2)+(1/2)2-(1/2)2

= ∫ dt/√(t+1/2)2-(1/2)2 (ii)

Let t+1/2 = u

dt = du

Put the above value in eq. (ii)

= ∫ dt/√(u)2-(1/2)2

Integrate the above eq. then, we get

= log|u +√u2-(1/2)2| + c [since ∫ 1/√x2-a2 dx =log|x +√x2-a2| + c]

= log|t+1/2 +√(t+1/2)2-(1/2)2| + c

= log|t+1/2 +√t2+t| + c

Hence, I = log|sinx+1/2 +√sin2x+sinx| + c

Question 17. Evaluate ∫ sinx-cosx/ √sin2x dx

Solution:

Let us assume I =∫ sinx-cosx/ √sin2x dx

∫ sinx-cosx/ √sin2x dx = ∫ sinx-cosx/ √(sinx+cosx)2 -1 dx

= ∫ sinx-cosx/ √(sinx+cosx)2 -1 dx (i)

Let sinx+cosx = t

cosx-sinx dx = dt

Put the above value in eq. (i)

= -∫ dt/ √t2-(1)2

Integrate the above eq. then, we get

= – log|t +√t2-(1)2| + c [since ∫ 1/√x2-a2 dx =log|x +√x2-a2| + c]

= – log|sinx+cosx +√sin2x| + c

Hence, I = – log|sinx+cosx +√sin2x| + c

I think you got complete solutions for this chapter. If You have any queries regarding this chapter, please comment in the below section our subject teacher will answer you. We tried our best to give complete solutions so you got good marks in your exam.

If these solutions have helped you, you can also share rdsharmasolutions.in to your friends.

Leave a Comment

Your email address will not be published. Required fields are marked *