Here we provide RD Sharma Class 12 Ex 19.15 Solutions Chapter 19 Indefinite Integrals for English medium students, Which will very helpful for every student in their exams. Students can download the latest Sharma Class 12 Ex 19.15 Solutions Chapter 19 Indefinite Integrals book pdf download. Now you will get step-by-step solutions to each question.
Textbook | NCERT |
Class | Class 12th |
Subject | Maths |
Chapter | 19 |
Exercise | 19.15 |
Category | RD Sharma Solutions |
RD Sharma Class 12 Ex 19.15 Solutions Chapter 19 Indefinite Integrals
Question 1. Evaluate ∫ 1/(4x2 + 12x + 5) dx
Solution:
Let I = ∫ 1/(4x2 + 12x + 5) dx
by taking 1/4 common from the above eq
= 1/4 ∫ 1/ x2 + 3x + 5/4 dx
= 1/4 ∫ 1/ x2 + 2x × (3/2)x + (3/2)2 – (3/2)2 + 5/4 dx
= 1/4 ∫ 1/ (x + 3/2)2 – 1 dx (i)
put (x+ 3/2) = t
dx = dt
put the above value in eq. (i)
= 1/4 ∫ 1/ t2 – (1)2 dt
Integrate the above eq. then, we get
= 1/4 × 1/2×(1) log |t-1/t+1| +c [since, ∫1/x2 – a2 dx = 1/2a log|x-a/x+a| +c]
put the value of t in the above eq.
= 1/8 log|x+ 3/2 – 1/x+ 3/2 + 1| + c
Hence, I = 1/8 log|2x+1/ 2x+5| + c
Question 2. Evaluate ∫1/x2 – 10x + 34 dx
Solution:
Let I = ∫1/x2 – 10x + 34 dx
=∫1/x2 – 2x × 5 + (5)2 – (5)2 + 34 dx
=∫1/ (x – 5)2 + 9 dx (i)
substituting (x-1) = t
dx = dt
put the above value in eq. (i)
= ∫ 1/ t2 + (3)2 dt
Integrate the above eq. then, we get
= 1/3 tan-1 (t/3) + c [Since, ∫ 1/x2 + a2 dx = 1/a tan-1 (x/2) + c]
Put the value of t in the above eq.
Hence, I = 1/3 tan-1 (x-5/ 3) + c
Question 3. Evaluate ∫ 1/ 1-x-x2 dx
Solution:
Let I = ∫ 1/ 1-x-x2 dx
= ∫ 1/ -(x2 – x – 1) dx
adding and subtracting 1/4 in the denominator to make it a perfect square
= ∫ 1/ -(x2 – x + 1/4 – 1 – 1/4) dx
= ∫ 1/ -([x2 – x + 1/4] – 1 – 1/4) dx
= ∫ 1/ -([x – 1/2]2 – 5/4) dx
= ∫ 1/ (5/4 – [x – 1/2]2) dx
= ∫ 1/ ([√5/2]2 – [x – 1/2]2) dx
Integrate the above eq. then, we get
= 1/2(√5/2) log|√5/2 + (x-1/2)/ √5/2 – (x-1/2)| + c [since ∫ 1/a2 + x2 dx = 1/2a log|x+a/x-a| +c]
Hence, I = 1/√5 log|√5/2 + (x-1/2) /√5/2 – (x-1/2)| + c
Question 4. Evaluate ∫ 1/2x2 – x – 1 dx
Solution:
Let I = ∫ 1/2x2 – x – 1 dx
taking 1/2 common from the above eq.
=1/2 ∫ 1/ x2 – x/2 – 1/2 dx
=1/2 ∫ 1/ x2 – 2x × 1/4 + (1/4)2 – (1/4)2 – 1/2 dx
= 1/2 ∫ 1/ (x – 1/4)2 – 9/16 dx
put, x- 1/4 = t
dx = dt
= 1/2 ∫ 1/ t2 – (3/4)2 dt
Integrate the above eq. then, we get
= (1/2) 1/[2×(3/4)] log|t-(3/4) / t+(3/4)| + c [Since, ∫ 1/x2 -a2 dx = 1/2a log|x – a/ x+a| + c]
Put the value of t in above eq.
= 1/3 log|(x-1/4-3/4)/x-1/4+3/4| + c
Hence, I = 1/3log|x – 1/2x+1| + c
Question 5. Evaluate ∫ dx/x2 + 6x +13
Solution:
Let I =∫ dx/x2 + 6x +13 (i)
We have x2 + 6x +13 = x2 + 6x + 32 – 32 +13 =(x + 3)2 + 4
Put the above value in eq. (i)
∫ 1/x2 + 6x +13 dx = ∫ 1/(x+3)2 + 22 dx
put x+3 = t and
dx = dt
= ∫ dt/ t2 + 22
Integrate the above eq. then, we get
= 1/2 tan-1 t/2 + c
Put the value of t in above eq.
Hence, I = 1/2 tan-1 x+3/2 + c
I think you got complete solutions for this chapter. If You have any queries regarding this chapter, please comment in the below section our subject teacher will answer you. We tried our best to give complete solutions so you got good marks in your exam.
If these solutions have helped you, you can also share rdsharmasolutions.in to your friends.