Here we provide RD Sharma Class 12 Ex 12.1 Solutions Chapter 12 Higher Order Derivatives for English medium students, Which will very helpful for every student in their exams. Students can download the RD Sharma Class 12 Ex 12.1 Solutions Chapter 12 Higher Order Derivatives book pdf download. Now you will get step-by-step solutions to each question.
Textbook | NCERT |
Class | Class 12th |
Subject | Maths |
Chapter | 12 |
Exercise | 12.1 |
Category | RD Sharma Solutions |
RD Sharma Class 12 Ex 12.1 Solutions Chapter 12 Higher Order Derivatives
Find the second order derivative of following function
Question 1(i). x3 + tanx
Solution:
Let us considered
f(x) = x3 + tanx
On differentiating both sides w.r.t x,
f'(x) = 3x2 + sec2x
Again differentiating both sides w.r.t x,
f”(x) = 6x + 2(secx)(secx.tanx)
f”(x) = 6x + 2sec2x.tanx
Question 1(ii). sin(logx)
Solution:
Let us considered
y = sin(logx)
On differentiating both sides w.r.t x,
(dy/dx) = cos(logx) × (1/x)
(dy/dx) = cos(logx)/x
Again differentiating both sides w.r.t x,
d2y/dx2 = d/dx[cos(logx)/x]
=
= -[sin(logx) + cos(logx)]/x2
Question 1(iii). log(sinx)
Solution:
Let us considered
y = log(sinx)
On differentiating both sides w.r.t x,
(dy/dx) = (1/sinx) × (cosx)
(dy/dx) = cotx
Again differentiating both sides w.r.t x,
d2y/dx2 = -cosec2x
Question 1(iv). exsin5x
Solution:
Let us considered
y = exsin5x
On differentiating both sides w.r.t x,
(dy/dx) = exsin5x + 5excos5x
Again differentiating both sides w.r.t x,
d2y/dx2 = exsin5x + 5excos5x + 5(excos5x – 5exsin5x)
d2y/dx2 = -24exsin5x + 10excos5x
d2y/dx2 = 2ex(5cos5x – 12sinx)
Question 1(v). e6xcos3x
Solution:
Let us considered
y = e6xcos3x
On differentiating both sides w.r.t x,
(dy/dx) = 6e6xcos3x – 3e6xsin3x
Again differentiating both sides w.r.t x,
d2y/dx2 = 6(6e6xcos3x – 3e6xsin3x) – 3(6e6xsin3x + 3e6xcos3x)
d2y/dx2 = 36e6xcos3x – 18e6xsin3x – 18e6xsin3x – 9e6xcos3x
d2y/dx2 = 27e6xcos3x – 36e6xsin3x
d2y/dx2 = 9e6x(3cos3x – 4sin3x)
Question 1(vi). x3logx
Solution:
Let us considered
y = x3logx
On differentiating both sides w.r.t x,
(dy/dx) = logx.3x2 + x3(1/x)
(dy/dx) = logx.3x2 + x2
(dy/dx) = x2(1 + 3logx)
Again differentiating both sides w.r.t x,
d2y/dx2 = (1 + 3logx).2x + x2(3/x)
d2y/dx2 = 2x + 6xlogx + 3x
d2y/dx2 = x(5 + 6logx)
Question 1(vii). tan-1x
Solution:
Let us considered
y = tan-1x
On differentiating both sides w.r.t x,
(dy/dx) = 1/(1 + x2)
Again differentiating both sides w.r.t x,
d2y/dx2 = (-1)(1 + x2)-2.2x
Question 1(viii). x.cosx
Solution:
Let us considered
y = x.cosx
On differentiating both sides w.r.t x,
(dy/dx) = cosx + x(-sinx)
(dy/dx) = cosx – xsinx
Again differentiating both sides w.r.t x,
d2y/dx2 = -sinx – (sinx + xcosx)
d2y/dx2 = -2sinx – xcosx
d2y/dx2 = -(xcosx + 2sinx)
Question 1(ix). log(logx)
Solution:
Let us considered
y = log(logx)
On differentiating both sides w.r.t x,
(dy/dx) = (1/logx) × (1/x)
(dy/dx) = 1/xlogx
Again differentiating both sides w.r.t x,
d2y/dx2 = (-1)(xlogx)-2.[(d/dx)xlogx]
d2y/dx2 = (-1)(xlogx)-2[logx+x.(1/x)]
d2y/dx2= (-1)(xlogx)-2.(logx+1)
Question 2. If y = e-x.cosx, show that d2y/dx2 = 2e-x.sinx.
Solution:
Let us considered
y = e-x.cosx
On differentiating both sides w.r.t x,
(dy/dx) = -e-x.cosx – e-x.sinx
Again differentiating both sides w.r.t x,
d2y/dx2 = -(-e-x.cosx – e-x.sinx) – (-e-x.sinx + e-x.cosx)
d2y/dx2 = e-x.cosx – e-x.cosx + e-x.sinx + e-x.sinx
d2y/dx2 = 2e-x.sinx
Hence Proved
Question 3. If y = x + tanx, Show that cos2x(d2y/dx2) – 2y + 2x = 0.
Solution:
Let us considered
y = x + tanx
On differentiating both sides w.r.t x,
(dy/dx) = 1 + sec2x
Again differentiating both sides w.r.t x,
d2y/dx2 = 0 + (2secx)(secx.tanx)
d2y/dx2 = 2sec2x.tanx
On multiplying both sides by cos2x
cos2x(d2y/dx2) = 2tanx
cos2x(d2y/dx2) = 2(y – x) [since, tanx = y – x]
cos2x(d2y/dx2) – 2y + 2x = 0
Hence Proved
Question 4. If y = x3logx, prove that (d4y/dx4) = (6/x).
Solution:
Let us considered
y = x3logx
On differentiating both sides w.r.t x,
(dy/dx) = logx.3x2 + x3(1/x)
(dy/dx) = logx.3x2 + x2
(dy/dx) = x2(1 + 3logx)
Again differentiating both sides w.r.t x,
d2y/dx2 = (1 + 3logx).2x + x2(3/x)
d2y/dx2 = 2x + 6xlogx + 3x
d2y/dx2 = 5x + 6xlogx
Again differentiating both sides w.r.t x,
d3y/dx3 = 5 + 6[logx + (x/x)]
d3y/dx3 = 11 + 6logx
Again differentiating both sides w.r.t x,
d4y/dx4 = (6/x)
Hence Proved
Question 5. If y = log(sinx), prove that (d3y/dx3) = 2cosx.cosec3x.
Solution:
Let us considered
y = log(sinx)
On differentiating both sides w.r.t x,
(dy/dx) = (1/sinx) × (cosx)
(dy/dx) = cotx
Again differentiating both sides w.r.t x,
d2y/dx2 = -cosec2x
Again differentiating both sides w.r.t x,
d3y/dx3 = -2cosecx.(-cosesx.cotx)
d3y/dx3 = 2cosec2x.cotx
d3y/dx3 = 2cosec2x.(cosx/sinx)
d3y/dx3 = cosx.cosec3x
Hence Proved
Question 6. If y = 2sinx + 3cosx, show that (d2y/dx2) + y = 0.
Solution:
Let us considered
y = 2sinx + 3cosx
On differentiating both sides w.r.t x,
(dy/dx) = 2cosx – 3sinx
Again differentiating both sides w.r.t x,
d2y/dx2 = -2sinx – 3cosx
d2y/dx2 = -(2sinx + 3cosx)
d2y/dx2 = -y
d2y/dx2 + y = 0
Hence Proved
Question 7. If y = (logx/x), show that (d2y/dx2) = (2logx – 3)/x3
Solution:
Let us considered
y = (logx/x)
On differentiating both sides w.r.t x,
(dy/dx) = (1 – logx)/x2
Again differentiating both sides w.r.t x,
d2y/dx2 = [-x – 2x(1 – logx)]/x4
d2y/dx2 = (2xlogx – 3x)/x4
d2y/dx2 = (2logx – 3)/x3
d2y/dx2 + y = 0
Hence Proved
Question 8. If x = a secθ, y = b tanθ, show that (d2y/dx2) = -b4/a2y3
Solution:
We have,
x = a secθ and y = b tanθ
On differentiating both sides w.r.t θ,
(dx/dθ) = a secθ.tanθ, (dy/dθ) = b sec2θ
(dy/dx) = (dy/dθ) × (dθ/dx)
(dy/dx) = (b sec2θ)/(a secθ.tanθ)
(dy/dx) = (b/a).cosecθ
Again differentiating both sides w.r.t x,
(d2y/dx2) = (b/a).(-cosecθ.cotθ).(dθ/dx)
(d2y/dx2) = -(b/a).(cosecθ.cotθ).(1/a secθ.tanθ)
(d2y/dx2) = – (b/a2).(cotθ).(1/tan2θ)
d2y/dx2 = -(b/a2).(1/tan3θ)
d2y/dx2 = -(b/a2tan3θ).(b3/b3)
d2y/dx2 = -(b4/a2y3)
Hence Proved
Question 9. If x = a(cost + tsint) and y = a(sint – tcost), prove that d2y/dx2 = sec3t/ at 0 < t < π/2.
Solution:
We have,
x = a(cost + tsint)and y=a(sint – tcost)
On differentiating both sides w.r.t t,
(dx/dt) = a(-sint + sint + tcost), (dy/dt) = a(cost – cost + tsint)
(dx/dt) = atcost, (dy/dt) = atsint
(dy/dx) = (dy/dt) × (dt/dx)
(dy/dx) = atsint × [1/atcost]
(dy/dx) = tant
Again differentiating both sides w.r.t x,
(d2y/dx2) = sec2x.(dt/dx)
(d2y/dx2) = sec2x.[1/atcost]
(d2y/dx2) = sec3x/at
Hence Proved
Question 10. If y = excosx, prove that d2y/dx2 = 2excos(x + π/2).
Solution:
We have,
y = excosx
On differentiating both sides w.r.t x,
(dy/dx) = excosx – exsinx
Again differentiating both sides w.r.t x,
d2y/dx2 = (excosx – exsinx) – (exsinx + excosx)
d2y/dx2 = excosx – excosx – exsinx – exsinx
d2y/dx2 = -2exsinx
d2y/dx2 = 2excos(x + π/2)
Question 11. If x = a cosθ, y = b sinθ, show that (d2y/dx2) = -b4/a2y3
Solution:
We have,
x = a cosθ and y = b sinθ
On differentiating both sides w.r.t θ,
(dx/dθ) = -a sinθ, (dy/dθ) = b cosθ
(dy/dx) = (dy/dθ)×(dθ/dx)
(dy/dx) = (b cosθ)/(-a sinθ)
(dy/dx) = -(b/a).cotθ
Again differentiating both sides w.r.t x,
(d2y/dx2) = -(b/a).(-cosec2θ).(dθ/dx)
(d2y/dx2) = (b/a).(cosec2θ).(1/-a sinθ)
(d2y/dx2) = (b/a).(cosec2θ).(1/-a sinθ)
d2y/dx2 = -(b/a2).(1/sin3θ)
d2y/dx2=-(b/a2sin3θ).(b3/b3)
d2y/dx2 = -(b4/a2y3) (since y = a sinθ)
Hence Proved
Question 12. If x = a(1 – cos3θ), y = a sin3θ, show that (d2y/dx2) = 32/27a, at θ = π/6.
Solution:
We have,
x = a(1 – cos3θ) and y = a sin3θ
On differentiating both sides w.r.t θ,
(dx/dθ) = a(3cos2θ.sinθ), (dy/dθ) = a 3sin2θcosθ
(dx/dθ) = 3acos2θ.sinθ, (dy/dθ) = 3asin2θ.cosθ
(dy/dx) = (dy/dθ) × (dθ/dx)
(dy/dx) = (3asin2θ.cosθ) × (3acos2θ.sinθ)
(dy/dx) = tan2θ/tanθ
(dy/dx) = tanθ
Again differentiating both sides w.r.t x,
(d2y/dx2) = sec2θ(dθ/dx)
(d2y/dx2) = sec2θ.[1/3acos2θ.sinθ]
(d2y/dx2) = sec4θ/3asinθ
At θ = π/6
d2y/dx2 = sec4(π/6)/3asin(π/6)
d2y/dx2 = 32/27a
Hence Proved
Question 13. If x = a(θ + sinθ), y = a(1 + cosθ), prove that (d2y/dx2) = -(a/y2).
Solution:
We have,
x = a(θ + sinθ) and y = a(1 + cosθ)
On differentiating both sides w.r.t θ,
(dx/dθ) = a(1 + cosθ), (dy/dθ) = -asinθ
(dy/dx) = (dy/dθ) × (dθ/dx)
(dy/dx) = [-asinθ] × [a(1 + cosθ)]
(dy/dx) = -sinθ/(1 + cosθ)
Again differentiating both sides w.r.t x,
(d2y/dx2) = -(1 + cosθ)/a(1 + cosθ)3
(d2y/dx2) = -1/a(1 + cosθ)2
(d2y/dx2) = -[1/a(1 + cosθ)2](a/a)
d2y/dx2 = -a/y2
Hence Proved
Question 14. If x = a(θ – sinθ), y = a(1 + cosθ), find (d2y/dx2).
Solution:
We have,
x = a(θ – sinθ) and y = a(1 + cosθ)
On differentiating both sides w.r.t θ,
(dx/dθ) = a(1 – cosθ), (dy/dθ) = -asinθ
(dy/dx) = (dy/dθ) × (dθ/dx)
(dy/dx) = [-asinθ] × [a(1 – cosθ)]
(dy/dx) = -sinθ/(1 – cosθ)
Again differentiating both sides w.r.t x,
(d2y/dx2) = 1/a(1 – cosθ)2
d2y/dx2 = (1/4a)[cosec4(θ/2)]
Question 15. If x = a(1 – cosθ), y = a(θ + sinθ), prove that (d2y/dx2) = -1/a at θ = π/2.
Solution:
We have,
x = a(1 – cosθ) and y = a(θ + sinθ)
On differentiating both sides w.r.t θ,
(dx/dθ) = a(sinθ), (dy/dθ) = a(1 + cosθ)
(dy/dx) = (dy/dθ) × (dθ/dx)
(dy/dx) = [a(1 + cosθ)] × [asinθ)]
(dy/dx) = (1 + cosθ)/sinθ
Again differentiating both sides w.r.t x,
d2y/dx2 = (-sin2θ – cosθ – cos2θ)/asin3θ
d2y/dx2 = -(sin2θ + cosθ + cos2θ)/asin3θ
At θ = π/2,
d2y/dx2 = -(1 + 0)/a
d2y/dx2 = -(1/a)
Hence Proved
Question 16. If x = a(1 + cosθ), y = a(θ + sinθ), prove that (d2y/dx2) = -1/a at θ = π/2.
Solution:
We have,
x = a(1 + cosθ) and y = a(θ + sinθ)
On differentiating both sides w.r.t θ,
(dx/dθ) = a(-sinθ), (dy/dθ) = a(1 + cosθ)
(dy/dx) = (dy/dθ) × (dθ/dx)
(dy/dx) = [a(1 + cosθ)] × [-asinθ)]
(dy/dx) = -(1 + cosθ)/sinθ
Again differentiating both sides w.r.t x,
d2y/dx2 = (-sin2θ – cosθ – cos2θ)/asin3θ
d2y/dx2 = -(sin2θ + cosθ + cos2θ)/asin3θ
At θ = π/2,
d2y/dx2 = -(1 + 0)/a
d2y/dx2 = -(1/a)
Hence Proved
Question 17. If x = cosθ, y = sin3θ, prove that y(d2y/dx2) + (dy/dx)2 = 3sin2θ(5cos2θ – 1).
Solution:
We have,
x = cosθ and y = sin3θ
On differentiating both sides w.r.t θ,
(dx/dθ) = -sinθ, (dy/dθ) = 3sin2θ.cosθ
(dy/dx) = (dy/dθ) × (dθ/dx)
(dy/dx) = [3sin2θ.cosθ] × [-sinθ]
(dy/dx) = -3sinθ.cosθ
Again differentiating both sides w.r.t x,
d2y/dx2 = -3[sinθ(-sinθ) + cosθ.cosθ](dθ/dx)
d2y/dx2 = (3sin2θ – 3cos2θ)/-sinθ
d2y/dx2 = -(3sin2θ – 3cos2θ)/sinθ
L.H.S,
y(d2y/dx2) + (dy/dx)2 = -sin3θ[(3sin2θ – 3cos2θ)/sinθ] + (-3sinθ.cosθ)2
= 3sin2θ.cos2θ – 3sin4θ + 9sin2θ.cos2θ
= 12sin2θ.cos2θ – 3sin4θ
= 3sin2θ(4cos2θ – sin2θ)
= 3sin2θ(4cos2θ – sin2θ – cos2θ + cos2θ)
= 3sin2θ[5cos2θ – (sin2θ + cos2θ)]
= 3sin2θ(5cos2θ – 1)
= R.H.S
L.H.S = R.H.S
Hence Proved
Question 18. If y = sin(sinx), prove that (d2y/dx2) + tanx.(dy/dx) + ycos2x = 0
Solution:
We have,
y = sin(sinx)
On differentiating both sides w.r.t x,
(dy/dx) = cos(sinx).cosx
Again differentiating both sides w.r.t x,
d2y/dx2 = -sin(sinx).cosx.cosx – cos(sinx).sinx
d2y/dx2 = -sin(sinx).cos2x – cos(sinx).sinx
d2y/dx2 = -sin(sinx).cos2x – cos(sinx).cosx.tanx
d2y/dx2 = -ycos2x – (dy/dx)tanx
d2y/dx2 + ycos2x + (dy/dx)tanx = 0
Hence Proved
Question 19. If x = sin t, y = sin pt, prove that (1 – x2)(d2y/dx2) – x.(dy/dx) + p2y = 0
Solution:
We have,
x = sin t, and y = sin pt
On differentiating both sides w.r.t t,
(dx/dt) = cos t, (dy/dt) = pcos pt
(dy/dx) = (dy/dt) × (dt/dx)
(dy/dx) = pcos pt×[1/cos t]
(dy/dx) = pcos pt/cos t
Again differentiating both sides w.r.t x,
d2y/dx2 = (-p2sin pt.cos t + pcos pt.sin t)/cos3t
d2y/dx2 = -(p2sin pt)/cos2t + (pcos pt.sin t)/cos3t
cos2t(d2y/dx2) = -p2y + x(dy/dx)
(1 – sin2x)(d2y/dx2) + p2y – x(dy/dx) = 0
(1 – y2)(d2y/dx2) + p2y – x(dy/dx) = 0
Question 20. If y = (sin-1x)2, prove that (1 – x2)(d2y/dx2) – x.(dy/dx) + p2y = 0.
Solution:
We have,
y = (sin-1x)2,
On differentiating both sides w.r.t t,
Again differentiating both sides w.r.t x,
d2y/dx2 = [x/(1 – x2)](dy/dx) + 2/(1 – x2)
(1 – x2)d2y/dx2 = x(dy/dx) + 2
(1 – x2)d2y/dx2 – x(dy/dx) – 2 = 0
Hence Proved
Question 21. If y =
, prove that (1 + x2)y2 + (2x – 1)y1 = 0.
Solution:
We have,
y =
On differentiating both sides w.r.t t,
y1 =
× [1/(1 + x2)]
Again differentiating both sides w.r.t x,
y2 =
(1 + x2)y2 =
/(1 + x2) – 2x
/(1 + x2)
(1 + x2)y2 = (dy/dx) – 2x(dy/dx)
(1 + x2)y2 – (dy/dx) + 2x(dy/dx) = 0
(1 + x2)y2 + (2x – 1)(dy/dx) = 0
Hence Proved
Question 22. If y = 3cos(logx) + 4sin(logx), prove that x2y2 + xy1 + y = 0.
Solution:
We have,
y = 3cos(logx) + 4sin(logx)
On differentiating both sides w.r.t x,
y1 = -3sin(logx) × (1/x) + 4cos(logx) × (1/x)
xy1 = -3sin(logx) + 4cos(logx)
Again differentiating both sides w.r.t x,
xy2 + y1 = -3cos(logx)×(1/x) – 4sin(logx) × (1/x)
x2y2 + xy1 = -[3cos(logx) + 4sin(logx)]
x2y2 + xy1 = -y
x2y2 + xy1 + y = 0
Hence Proved
Question 23. If y = e2x(ax + b), show that y2 – 4y1 + 4y = 0.
Solution:
We have,
y = e2x(ax + b)
On differentiating both sides w.r.t θ,
y1 = 2e2x(ax + b) + a.e2x
Again differentiating both sides w.r.t x,
y2 = 4e2x(ax + b) + 2ae2x + 2a.e2x
y2 = 4e2x(ax + b) + 4a.e2x
Lets take L.H,S,
= y2 – 4y1 + 4y
= 4e2x(ax + b) + 4a.e2x – 4[2e2x(ax + b) + a.e2x] + 4[e2x(ax + b)]
= 8e2x(ax + b) – 8e2x(ax + b) + 4a.e2x – 4a.e2x
= 0
= R.H.S
L.H.S = R.H.S
Hence Proved
Question 24. If x = sin(logy/a), show that (1 – x2)y2 – xy1 – a2y = 0.
Solution:
We have,
x = sin(logy/a)
(logy/a) = sin-1x
logy = asin-1x
On differentiating both sides w.r.t x,
(1/y)y1 = a/√(1 – x2)
y1 = ay/√(1 – x2)
Again differentiating both sides w.r.t x,
y2
(1 – x2)y2 = a√(1 – x2) × y1 + axy/√(1 – x2)
(1 – x2)y2 = a√(1 – x2) × [ay/√(1 – x2)] + x[ay/√(1 – x2)]
(1 – x2)y2 = a2p + xy
(1 – x2)y2 – a2p – xy1 = 0
Hence Proved
Question 25. If logy = tan-1x, show that (1 + x2)y2 + (2x – 1)y1 = 0.
Solution:
We have,
logy = tan-1x
On differentiating both sides w.r.t θ,
(1/y)y1 = 1/(1 + x2)
(1 + x2)y1 = y
Again differentiating both sides w.r.t x,
2xy1 + (1 + x2)y2 = y1
(1 + x2)y2 + (2x – 1)y1 = 0
Hence Proved
Question 26. If y = tan-1x, show that (1 + x2)(d2y/dx2) + 2x(dy/dx) = 0.
Solution:
We have,
y = tan-1x
On differentiating both sides w.r.t x,
(dy/dx) = 1/(1 + x2)
Again differentiating both sides w.r.t x,
d2y/dx2 = [-1/(1 + x2)2] × (2x)
d2y/dx2 = [-2x/(1 + x2)2]
(1 + x2)(d2y/dx2) = -2x/(1 + x2)
(1 + x2)(d2y/dx2) = -2x(dy/dx)
(1 + x2)(d2y/dx2) + 2x(dy/dx) = 0
Hence Proved
Question 27. If y = [log{x+(√x2+1)}]2, show that (1 + x2)(d2y/dx2) + x(dy/dx) = 2.
Solution:
We have,
y = [log{x + (√x2 + 1)}]2
On differentiating both sides w.r.t x,
dy/dx = 2[log{x + (√x2 + 1)}]/(√x2 + 1)
Again differentiating both sides w.r.t x,
(x2 + 1)(d2y/dx2) = 2 – x(dy/dx)
(x2 + 1)(d2y/dx2) + x(dy/dx) = 2
Hence Proved
Question 28. If y = (tan-1x)2, then prove that (1 + x2)2y2 + 2x(1 + x2)y1 = 2
Solution:
We have,
y = (tan-1x)2
On differentiating both sides w.r.t x,
y1 = 2(tan-1x)[1/(1 + x2)]
(1 + x2)y1 = 2(tan-1x)
Again differentiating both sides w.r.t x,
(1 + x2)y2 + 2xy1 = 2/(1 + x2)
(1 + x2)2y2 + 2x(1 + x2)y1 = 2
Hence Proved
Question 29. If y = cotx, prove that (d2y/dx2) + 2y(dy/dx) = 0.
Solution:
We have,
y = cotx
On differentiating both sides w.r.t x,
(dy/dx) = -cosec2x
Again differentiating both sides w.r.t x,
d2y/dx2 = -(2cosec x) × (-cosec x.cot x)
d2y/dx2 = 2cosec2x.cot x
d2y/dx2 = 2(cot x)(cosec2x)
d2y/dx2 = -2y(dy/dx)
d2y/dx2 + 2y(dy/dx) = 0
Hence Proved
Question 30. Find d2y/dx2 where y = log(x2/e2).
Solution:
We have,
y = log(x2/e2)
On differentiating both sides w.r.t x,
(dy/dx) = (2/x)
Again differentiating both sides w.r.t x,
d2y/dx2 = -(2/x2)
Hence Proved
Question 31. If y = ae2x + be-x, show that (d2y/dx2) – (dy/dx) – 2y = 0.
Solution:
We have,
y = ae2x + be-x
On differentiating both sides w.r.t t,
(dy/dx) = 2ae2x – be-x
Again differentiating both sides w.r.t x,
(d2y/dx2) = 4ae2x + be-x
(d2y/dx2) = 2ae2x – be-x + 2(ae2x + be-x)
(d2y/dx2) = (dy/dx) + 2y
(d2y/dx2) – (dy/dx) – 2y = 0
Hence Proved
Question 32. If y = ex(sinx + cosx), prove that d2y/dx2 – 2(dy/dx) + 2y = 0.
Solution:
We have,
y = ex(sinx + cosx)
On differentiating both sides w.r.t x,
(dy/dx) = ex(sinx + cosx) + ex(cosx – sinx)
(dy/dx) = 2excosx
Again differentiating both sides w.r.t x,
(d2y/dx2) = 2excosx – 2exsinx
Lets take L.H.S,
= d2y/dx2 – 2(dy/dx) + 2y
= 2excosx – 2exsinx – 2(2excosx) + 2ex(sinx + cosx)
= 4excosx – 4excosx – 2exsinx + 2exsinx
= 0
L.H.S = R.H.S
Hence Proved
Question 33. If y = cos-1x, find d2y/dx2 in terms of y alone.
Solution:
We have,
y = cos-1x
On differentiating both sides w.r.t x,
(dy/dx) = -1/√(1-x2)
Again differentiating both sides w.r.t x,…(i)
y = cos-1x
x = cosy
On putting the value of x in equation (i), we get
d2y/dx2 = -cosy/sin3y
d2y/dx2 = -cot y cosec2y
Question 34. If y =, prove that (1 – x2)(d2y/dx2) – x(dy/dx) – a2y = 0.
Solution:
We have,
y =
Taking log both sides
logy = acos-1x.loge
logy = acos-1x
On differentiating both sides w.r.t x,
(1/y)(dy/dx) = a×[-1/√(1-x2)]
(dy/dx) = -ay/√(1-x2)
On squaring both sides, we have
(dy/dx)2 = a2y2/(1 – x2)
(1 – x2)(dy/dx)2 = a2y2
Again differentiating both sides w.r.t x,
2(1 – x2)(dy/dx)(d2y/dx2) – 2x(dy/dx)2 = 2a2y(dy/dx)
(1 – x2)(d2y/dx2) – x(dy/dx) = a2y
(1 – x2)(d2y/dx2) – x(dy/dx) – a2y = 0
Hence Proved
Question 35. If y = 500e7x + 600e-7x, show that d2y/dx2 = 49y.
Solution:
We have,
y = 500e7x + 600e-7x
On differentiating both sides w.r.t θ,
(dy/dx) = 7 × (500e7x – 600e-7x)
Again differentiating both sides w.r.t x,
(d2y/dx2) = 49 × (500e7x + 600e-7x)
(d2y/dx2) = 49y
Hence Proved
Question 36. If x = 2cos t – cos 2t, y = 2sin t – sin 2t, find d2y/dx2 at t = π/2.
Solution:
We have,
x = 2cos t – cos 2t, and y = 2sin t – sin 2t
On differentiating both sides w.r.t t,
(dx/dt) = -2sin t + 2sin 2t, (dy/dt) = 2cos t – 2cos 2t
(dy/dx) = (dy/dt) × (dt/dx)
(dy/dx) = (2cos t – 2cos 2t)/(-2sin t + 2sin 2t)
(dy/dx) = (cos t – cos 2t)/(-sin t + sin 2t)
Again differentiating both sides w.r.t x,
At t = π/2
d2y/dx2 = (1 + 2)/-2
d2y/dx2 = -(3/2)
Question 37. If x = 4z2 + 5, y = 6z2 + 7z + 3, find d2y/dx2.
Solution:
We have,
x = 4z2 + 5, and y = 6z2 + 7z + 3
On differentiating both sides w.r.t z,
(dx/dz) = 8z, and (dy/dz) = 12z + 7
(dy/dx) = (dy/dz) × (dz/dx)
(dy/dx) = (12z + 7)/8z
Again differentiating both sides w.r.t x,
(d2y/dx2) = -7/64z3
Hence Proved
Question 38. If y = log(1 + cosx), prove that d3y/dx3 + (d2y/dx2).(dy/dx) = 0.
Solution:
We have,
y = log(1 + cosx)
On differentiating both sides w.r.t x,
(dy/dx) = -sinx/(1 + cosx)
Again differentiating both sides w.r.t x,
d2y/dx2 = (-cosx – cos2x – sin2x)/(1 + cosx)2
d2y/dx2 = -(1 + cosx)/(1 + cosx)2
d2y/dx2 = -1/(1 + cosx)
Again differentiating both sides w.r.t x,
d3y/dx3 = -sinx/(1 + cosx)2
d3y/dx3 + [-1/(1 + cosx)][-sinx/(1 + cosx)] = 0
d3y/dx3 + (d2y/dx2).(dy/dx) = 0
Hence Proved
Question 39. If y = sin(logx), prove that x2(d2y/dx2) + x(dy/dx) + y = 0.
Solution:
We have,
y = sin(logx)
On differentiating both sides w.r.t x,
(dy/dx) = cos(logx).(1/x)
x(dy/dx) = cos(logx)
Again differentiating both sides w.r.t x,
x(d2y/dx2) + (dy/dx) = -sin(logx).(1/x)
x2(d2y/dx2) + x(dy/dx) = -sin(logx)
x2(d2y/dx2) + x(dy/dx) = -y
x2(d2y/dx2) + x(dy/dx) + y = 0
Hence Proved
Question 40. If y = 3e2x + 2e3x, prove that d2y/dx2 – 5(dy/dx) + 6y = 0.
Solution:
We have,
y = 3e2x + 2e3x
On differentiating both sides w.r.t x,
(dy/dx) = 6e2x + 6e3x
(dy/dx) = 6(e2x + e3x)
Again differentiating both sides w.r.t x,
d2y/dx2 = 6(2e2x + 3e3x)
d2y/dx2 = 12e2x + 18e3x
d2y/dx2 = 5(6e2x + 6e3x) – 6(3e2x + 2e3x)
d2y/dx2 = 5(dy/dx) – 6y
d2y/dx2 – 5(dy/dx) + 6y = 0
Hence Proved
Question 41. If y = (cot-1x)2, prove that y2(x2 + 1)2 + 2x(x2 + 1)y1 = 2.
Solution:
We have,
y = (cot-1x)2
On differentiating both sides w.r.t x,
y1 = 2(cot-1x) × [-1/(1 + x2)]
(1 + x2)y1 = -2cot-1x
Again differentiating both sides w.r.t x,
(1 + x2)y2 + 2xy1 = 2/(1 + x2)
(1 + x2)2y2 + 2x(1 + x2)y1 = 2
Hence Proved
Question 42. If y = cosec-1x, then show that x(x2 – 1)d2y/dx2 – (2x2 – 1)(dy/dx) = 0.
Solution:
We have,
y = cosec-1x
On differentiating both sides w.r.t x,
(dy/dx) = -1/x√(x2 – 1)
On squaring both sides,
(dy/dx)2 = 1/x2(x2 – 1)
x2(x2 – 1)(dy/x)2 = 1
(x4 – x2)(dy/dx)2 = 1
2(dy/dx)(d2y/dx2)(x4 – x2) + (dy/dx)2(4x3 – 2x) = 0
2x2(x2 – 1)(dy/dx)(d2y/dx2) + 2x(2x2 – 1)(dy/dx)2 = 0
x(x2 – 1)(d2y/dx2) + (2x2 – 1)(dy/dx) = 0
Hence Proved
Question 43. If x = cos t + log(tant/2), y = sin t, then find the value of d2y/dt2 and d2y/dx2 at t = π/4 in terms of y alone.
Solution:
We have,
y = sin t
On differentiating both sides w.r.t t,
(dy/dt) = cos t
Again differentiating both sides w.r.t x,
(d2y/dx2) = -sin t
At t = π/4
(d2y/dx2)t=π/4 = -sin(π/4)
= -1/√2
x = cos t + log(tant/2)
On differentiating both sides w.r.t t,
(dx/dt) = -sin t + (1/sin t)
(dx/dt) = (-sin2t + 1)/sin t
(dx/dt) = cos2t/sint
(dx/dt) = cos t × cot t
(dy/dx) = (dy/dt) × (dt/dx)
(dy/dx) = [cos t] × [1/cos t × cot t]
(dy/dx) = tan t
Again differentiating both sides w.r.t x,
(d2y/dx2) = sec2t × (dt/dx)
(d2y/dx2) = sec2t × [1/cos t × cot t]
(d2y/dx2) = sin t/cos4t
(d2y/dx2)t=π/4 = sin(π/4)/cos4(π/4)
(d2y/dx2) = 2√2
At t = π/4, (d2y/dx2) = -1/√2 and (d2y/dx2) = 2√2
Question 44. If x = asin t, y = a[cos t + log(tant/2)], find d2y/dx2.
Solution:
We have,
x = asin t, and y = a[cos t + log(tant/2)]
On differentiating both sides w.r.t t,
(dx/dt) = acos t and
(dy/dt) = a[-sin t + (1/sin t)]
(dy/dt) = a[(-sin2t + 1)/sin t]
(dy/dt) = a[cos2t/sint]
(dy/dt) = acos t × cot t
(dy/dx) = (dy/dt) × (dt/dx)
(dy/dx) = [acos t × cot t] × [1/acos t]
(dy/dx) = cot t
Again differentiating both sides w.r.t x,
(d2y/dx2)=-cosec2t × (dt/dx)
(d2y/dx2) = -cosec2t × [1/acos t]
(d2y/dx2) = -(1/asin2t × cos t)
Question 45. If x = a(cos t + tsin t), and y = a(sin t – tcos t), then find the value of d2y/dx2 at t = π/4.
Solution:
We have,
x = a(cos t + tsin t), and y = a(sin t – tcos t)
On differentiating both sides w.r.t t,
(dx/dt) = a(-sin t + sin t + tcos t)
(dx/dt) = atcos t
y = a(sin t – tcos t)
On differentiating both sides w.r.t t,
(dy/dx) = a(cos t – cos t + tsin t)
(dy/dx) = atsin t
(dy/dx) = (dy/dt) × (dt/dx)
(dy/dx) = [atsin t] × [1/atcos t]
(dy/dx) = tan t
Again differentiating both sides w.r.t x,
(d2y/dx2) = sec2x × (dt/dx)
(d2y/dx2) = sec2x × (1/atcos t)
(d2y/dx2) = 1/atcos3t
(d2y/dx2) = (8√2/aπ)
Question 46. If x = a[cos t + log(tant/2)], y = asin t, evaluate (d2y/dx2) at t = π/3.
Solution:
We have,
y = asin t
On differentiating both sides w.r.t t,
(dy/dt) = acos t
x = a[cos t + log(tant/2)]
On differentiating both sides w.r.t t,
(dx/dt) = a[-sin t + (1/sin t)]
(dx/dt) = a[(-sin2t + 1)/sin t]
(dx/dt) = a[cos2t/sint]
(dx/dt) = acos t × cot t
(dy/dx) = (dy/dt) × (dt/dx)
(dy/dx) = [cos t] × [1/cos t × cot t]
(dy/dx) = tan t
Again differentiating both sides w.r.t x,
(d2y/dx2) = sec2t × (dt/dx)
(d2y/dx2) = sec2t × [1/acos t × cot t]
(d2y/dx2) = sin t/acos4t
(d2y/dx2)t=π/3 = sin(π/3)/acos4(π/3)
(d2y/dx2) = (8√3/a)
Question 47. If x = a(cos2t + 2tsin2t), and y = a(sin2t – 2tcos2t), then find d2y/dx2.
Solution:
We have,
x = a(cos2t + 2tsin2t), and y = a(sin2t – 2tcos2t)
On differentiating both sides w.r.t t,
(dx/dt) = a(-2sin2t + 2sin2t + 4tcos2t), and (dy/dt) = a(2cos2t – 2cos2t + 4tsin2t)
(dy/dt) = a(4tcos2t), and (dy/dt)=a(4tsin2t)
(dy/dx) = (dy/dz) × (dz/dx)
(dy/dx) = a(4tsin2t)/a(4tcos2t)
(dy/dx) = tan2t
Again differentiating both sides w.r.t x,
(d2y/dx2) = 2sec22t.(dt/dx)
(d2y/dx2) = 2sec22t/4atcos2t
(d2y/dx2) = 1/2atcos32t
(d2y/dx2) = (1/2at) × (sec3x)
Question 48. If x = asin t – bcos t, y = acos t + bsin t, prove that (d2y/dx2) = -(x2 + y2)/y3
Solution:
We have,
x = asin t – bcos t
On differentiating both sides w.r.t t,
(dx/dt) = acos t + bsin t
y = acos t + b sin t
On differentiating both sides w.r.t t,
(dy/dt) = -asin t + bcos t
(dy/dx) = (dy/dt) × (dt/dx)
(dy/dx) = [-asin t + bcos t] × [1/(acos t + bsin t)]
Again differentiating both sides w.r.t x,
d2y/dx2 = (-y2 – x2)/y3
d2y/dx2 = -(x2 + y2)/y3
Hence Proved
Question 49. Find A and B so that y = Asin3x + Bcos3x, satisfies the equation d2y/dx2 + 4(dy/dx) + 3y = 10cos3x.
Solution:
We have,
y = Asin3x + Bcos3x,
On differentiating both sides w.r.t x,
(dy/dx) = 3Acos3x – 3Bsin3x
Again differentiating both sides w.r.t x,
d2y/dx2 = -9Asin3x – 9Bcos3x
d2y/dx2 + 4(dy/dx) + 3y = (-9Asin3x – 9Bcos3x) + 4(3Acos3x – 3Bsin3x) + 3(Asin3x + Bcos3x)
= -9Asin3x – 9Bcos3x + 12Acos3x – 12Bsin3x + 3Asin3x + 3Bcos3x
= -6Asin3x – 12Bsin3x – 6Bcos3x + 12Acos3x
= (-6A – 12B)sin3x + (-6B + 12A)cos3x …(i)
Given that
d2y/dx2 + 4(dy/dx) + 3y = 10cos3x …(ii)
On comparing the coefficients, we get
(-6A – 12B) = 0 and (-6B + 12A) = 10
Solving equation,
A = (2/3) and B = -(1/3)
Question 50. If y = Ae-ktcos(pt + c), prove that (d2y/dt2) + 2k(dy/dt) + n2y = 0, where n2 = p2 + k2
Solution:
We have,
y = Ae-ktcos(pt + c)
On differentiating both sides w.r.t t,
(dy/dt) = -kAe-ktcos(pt + c) – pAe-ktsin(pt + c)
(dy/dt) = -ky – pAe-ktsin(pt + c)
Again differentiating both sides w.r.t t,
(d2y/dt2) = -k(dy/dt) + pAke-ktsin(pt + c) – p2Ake-ktcos(pt + c)
(d2y/dt2) = -k(dy/dt) + k(-ky – dy/dx) – p2y
(d2y/dt2) = -k(dy/dt) – k2y – k(dy/dt) – p2y
(d2y/dt2) + 2k(dy/dt) + (k2 + p2)y = 0
(d2y/dt2) + 2k(dy/dt) + n2y = 0
Hence Proved
Question 51. If y = xn{acos(logx) + bsin(logx)}, prove that x2(d2y/dt2) + (1 – 2n) x (dy/dt) + (1 + n2)y = 0.
Solution:
We have,
y = xn{acos(logx) + bsin(logx)} …(i)
On differentiating both sides w.r.t x,
(dy/dx) = nxn-1{acos(logx) + bsin(logx)} + xn{-asin(logx).(1/x) + bcos(logx).(1/x)}
x(dy/dx) = nxn{acos(logx) + bsin(logx)} + xn{-asin(logx) + bcos(logx)}
x(dy/dx) = ny + xn{-asin(logx) + bcos(logx)} …(ii)
xn{-asin(logx) + bcos(logx)} = x(dy/dx) – ny …(iii)
Again differentiating both sides w.r.t x,
x(d2y/dx2) + (dy/dx) = n(dy/dx) + nxn-1{-asin(logx) + bcos(logx)} + xn{-acos(logx).(1/x) – bsin(logx).(1/x)}
x2(d2y/dx2) + (dy/dx) = nx(dy/dx) + nxn{-asin(logx) + bcos(logx)} – xn{acos(logx) + bsin(logx)}
x2(d2y/dx2) = nx(dy/dx) + n{x(dy/dx) – ny} – y – (dy/dx) [From equation (ii) and (iii)]
x2(d2y/dx2) = nx(dy/dx) + nx(dy/dx) – (dy/dx) – n2y – y
x2(d2y/dx2) = (dy/dx) x [2n – 1] – (n2 + 1)y
x2(d2y/dt2) + (1 – 2n) x (dy/dt) + (1 + n2)y = 0
Hence Proved
Question 52. y =, prove that (x2+1)d2y/d2x + xdy/dx – ny = 0.
Solution:
We have y =
On differentiating both sides w.r.t x,
dy/dx =
dy/dx =
dy/dx =
xdy/dx =
Again differentiating both sides w.r.t x,
d2y/dx2 =
d2y/dx2 =
d2y/dx2 =
(x2+1)d2y/d2x =
Now put all these values in this equation
(x2+1)d2y/d2x + xdy/dx – ny
Hence Proved
I think you got complete solutions for this chapter. If You have any queries regarding this chapter, please comment in the below section our subject teacher will answer you. We tried our best to give complete solutions so you got good marks in your exam.
If these solutions have helped you, you can also share rdsharmasolutions.in to your friends.