RD Sharma Class 12 Ex 11.7 Solutions Chapter 11 Differentiation

Here we provide RD Sharma Class 12 Ex 11.7 Solutions Chapter 11 Differentiation for English medium students, Which will very helpful for every student in their exams. Students can download the RD Sharma Class 12 Ex 11.7 Solutions Chapter 11 Differentiation book pdf download. Now you will get step-by-step solutions to each question.

TextbookNCERT
ClassClass 12th
SubjectMaths
Chapter11
Exercise11.7
CategoryRD Sharma Solutions

RD Sharma Class 12 Ex 11.7 Solutions Chapter 11 Differentiation

Question 1. Find \frac{dy}{dx} , when: x = at2 and y = 2at

Solution:

Given that x = at2, y = 2at

So,

\frac{dx}{dt}=\frac{d}{dt}(at^2)=2at\\ \frac{dy}{dt}=\frac{d}{dt}(2at)=2a

Therefore,

\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{2a}{2at}=\frac{1}{t}

Question 2. Find \frac{dy}{dx} , when: x = a(θ + sinθ) and y = a(1 – cosθ)

Solution:

Here,

x = a(θ + sinθ)

Differentiating it with respect to θ,

\frac{dx}{dθ}=a(1+cosθ)\ \ \ ..........(1)

and,

y = a(1 – cosθ)

Differentiate it with respect to θ,

\frac{dy}{dθ}=a(θ+sinθ)\\ \frac{dy}{dθ}=asinθ\ \ \ \ .....(2)

Using equation (1) and (2),

\frac{dy}{dx}=\frac{\frac{dy}{dθ}}{\frac{dx}{dθ}}\\ =\frac{asinθ}{a(1-cosθ)}\\ =\frac{\frac{2sinθ}{2}\frac{cosθ}{2}}{\frac{2sin^2θ}{2}},\ \ \ \ \ \ \ \left\{Since,\ 1-cosθ=\frac{2sin2θ}{2},\frac{2sinθ}{2}\frac{cosθ}{2}=sinθ\right\}\\ =\frac{dy}{dx}=\frac{tanθ}{2}

Question 3. Find \frac{dy}{dx} , when: x = acosθ and y = bsinθ

Solution:

Then x = acosθ and y = bsinθ

Then,

\frac{dx}{dθ}=\frac{d}{dθ}(acosθ)=-asinθ\\ \frac{dy}{dθ}=\frac{d}{dθ}(bsinθ)=bcosθ

Therefore,

\frac{dy}{dx}=\frac{\frac{dy}{dθ}}{\frac{dx}{dθ}}=\frac{bcosθ}{-asinθ}=-\frac{b}{a}cotθ

Question 4. Find \frac{dy}{dx} , when: x = aeΘ (sinθ -cosθ), y = aeΘ (sinθ +cosθ)

Solution:

Here,

x = aeΘ (sinθ – cosθ)

Differentiating it with respect to θ,

\frac{dx}{dθ}=a[e^θ\frac{d}{dθ}(sinθ-cosθ)+(sinθ-cosθ)\frac{d}{dθ}(e^θ)]\\ =a[e^θ(cosθ+sinθ)+(sinθ-cosθ)e^θ]\\ \frac{dx}{dθ}=a[2e^θsinθ]\ \ \ \ \ \ .......(1)

And,

y = aeΘ(sinθ+cosθ)

Differentiating it with respect to θ

\frac{dy}{dθ}=a[e^θ\frac{d}{dθ}(sinθ+cosθ)+(sinθ+cosθ)\frac{d}{dθ}(e^θ)]\\ =a[e^θ(cosθ-sinθ)+(sinθ+cosθ)e^θ]\\ \frac{dx}{dθ}=a[2e^θcosθ]\ \ \ \ \ \ .......(2)

Dividing equation (2) by equation (1)

\frac{\frac{dy}{dθ}}{\frac{dx}{dθ}}=\frac{a(2e^θ cosθ)}{a(2e^θ sinθ)}\\ \frac{dy}{dx}=cotθ

Question 5. Find \frac{dy}{dx} , when: x = bsin2θ and y = acos2θ

Solution:

Here,

x = bsin2θ and y = acos2θ

Then,

\frac{d}{dθ}=\frac{d}{dθ}(bsin^2θ)=2bsinθ cosθ\\ \frac{dy}{dθ}=\frac{d}{dθ}(acos^2θ)=-2acosθ sinθ \\ \frac{\frac{dy}{dθ}}{\frac{dx}{dθ}}=\frac{-2acosθ sinθ}{2bsinθ cosθ}=-\frac{a}{b}\\

Question 6. Find \frac{dy}{dx} , when: x = a(1 – cosθ) and y = a(θ +sinθ) at θ =\frac{\pi}{2}

Solution:

Here,

x = a(1 – cosθ) and y = a(θ + sinθ)

Then,

\frac{dx}{dθ}=\frac{d}{dθ}[a(1-cosθ)]=asinθ\\ \frac{dy}{dθ}=\frac{d}{dθ}[a(θ +sinθ)]=a(1+cosθ)

Therefore,

\frac{dy}{dx}=\frac{\frac{dy}{dθ}}{\frac{dx}{dθ}}=\frac{a(1+cosθ)}{a(sinθ)}|_{θ =\frac{x}{2}}\\ =\frac{a(1+0)}{a}=1

Question 7. Find \frac{dy}{dx} , when: x=\frac{e^t+e^{-t}}{2} andy=\frac{e^t-e^{-t}}{2}

Solution:

Here,

x=\frac{e^t+e^{-t}}{2}

Differentiate it with respect to t,

\frac{dx}{dt}=\frac{1}{2}\left[\frac{d}{dt}(e^t)+\frac{d}{dt}(e^{-t})\right]\\ =\frac{1}{2}\left[e^t+e^{-t}\frac{d}{dt}(e^{-t})\right]\\ \frac{dx}{dt}=\frac{1}{2}(e^t-e^{-t})=y\ \ \ ......(1)

and,

y=\frac{e^t-e^{-t}}{2}

Differentiating it with respect to t,

\frac{dy}{dt}=\frac{1}{2}\left[\frac{d}{dt}(e^t)-\frac{d}{dt}(e^{-t})\right]\\ =\frac{1}{2}\left[e^t-e^{-t}\frac{d}{dt}(e^{-t})\right]\\ \frac{dx}{dt}=\frac{1}{2}(e^t+e^{-t})=x
\frac{dy}{dt}=\frac{1}{2}\left[\frac{d}{dt}(e^t)-\frac{d}{dt}(e^{-t})\right]\\ =\frac{1}{2}\left[e^t-e^{-t}\frac{d}{dt}(e^{-t})\right]\\ \frac{dx}{dt}=\frac{1}{2}(e^t+e^{-t})=x\ \ \ \ .....(2)

Dividing equation (2) and (1)

\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{x}{y}\\ \frac{dy}{dt}=\frac{x}{y}

Question 8. Find \frac{dy}{dx} , when: x=\frac{3at}{1+t^2} andy=\frac{3at^2}{1+t^2}

Solution:

Here,

x=\frac{3at}{1+t^2}

Differentiating it with respect to t using quotient rule,

\frac{dx}{dt}=\left[\frac{(1+t^2)\frac{d}{dt}(3at)-3at\frac{d}{dt}(1+t^2)}{(1+t^2)^2}\right]\\ =\left[\frac{(1+t^2)(3a)-3at(2t)}{(1+t^2)^2}\right]\\ =\left[\frac{3a+3at^2-6at^2}{(1+t^2)^2}\right]\\ =\left[\frac{3a-3at^2}{(1-t^2)^2}\right]\\ \frac{dx}{dt}=\frac{3a(1-t^2)}{(1+t^2)^2}\ \ \ \ ....(1)

and,

y=\frac{3at^2}{1+t^2}

Differentiating it with respect to t using quotient rule,

\frac{dy}{dt}=\left[\frac{(1+t^2)\frac{d}{dt}(3at^2)-3at^2\frac{d}{dt}(1+t^2)}{(1+t^2)^2}\right]\\ =\left[\frac{(1+t^2)(6at)-(3at^2)(2t)}{(1+t^2)^2}\right]\\ =\left[\frac{6at+6at^3-6at^3}{(1+t^2)^2}\right]\\ \frac{dy}{dt}=\frac{6at}{(1+t^2)^2}\ \ \ \ ....(2)

Dividing equation (2) by (1)

\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{6at}{(1+t^2)^2}\times\frac{(1+t^2)^2}{3a(1-t^2)}\\ \frac{dy}{dt}=\frac{2t}{1-t^2}

Question 9. If x and y are connected parametrically by the equation, without eliminating the parameter, find\frac{dy}{dx} when: x = a(cosθ +θsinθ), y = a(sinθ -θcosθ)

Solution:

The given equations are

x = a(cosθ +θ sinθ) and y = a(sinθ -θcosθ)

Then,

\frac{dx}{dθ}=a\left[\frac{d}{dθ}cosθ +\frac{d}{dθ}(θ sinθ)\right]\\ =a\left[-sinθ +θ \frac{d}{dθ}(sinθ)+sinθ \frac{d}{dθ}(θ)\right]

= a[-sinθ + θcosθ + sinθ] = aθcosθ

\frac{dy}{dθ}=a\left[\frac{d}{dθ}sinθ +\frac{d}{dθ}(θ cosθ)\right]\\ =a\left[cosθ -\{θ \frac{d}{dθ}(cosθ)+cosθ \frac{d}{dθ}(θ)\}\right]

= a[cosθ +θsinθ -cosθ]

= aθsinθ

Therefore,

\frac{dy}{dx}=\frac{\left(\frac{dy}{dθ}\right)}{\left(\frac{dx}{dθ}\right)}=\frac{aθsinθ}{aθ cosθ}=tanθ

Question 10. Find \frac{dy}{dx} , when: x=e^θ \left(θ +\frac{1}{θ}\right) andy=e^{-θ} \left(θ -\frac{1}{θ}\right)

Solution:

Here,

x=e^θ \left(θ +\frac{1}{θ}\right)

Differentiating it with respect to θ using product rule,

\frac{dx}{dθ}=e^θ \frac{d}{dθ}\left(θ +\frac{1}{θ}\right)+\left(θ +\frac{1}{θ}\right)\frac{d}{dθ}(e^θ)\\ =e^θ \left(1-\frac{1}{θ^2}\right)+\left(\frac{θ ^2+1}{θ}\right)e^θ \\ =e^θ \left(\frac{θ ^2-1+θ ^3+θ}{θ ^2}\right)\\ \frac{dx}{dθ}=\frac{e^θ (θ ^3+θ ^2+θ -1)}{θ ^2}\ \ \ .....(1)

and,

y=e^θ \left(θ -\frac{1}{θ}\right)

Differentiating it with respect to θ using product rule and chain rule

\frac{dy}{dθ}=e^{-θ} \frac{d}{dθ}\left(θ -\frac{1}{θ}\right)+\left(θ -\frac{1}{θ}\right)\frac{d}{dθ}(e^{-θ})\\ =e^{-θ} \left(1+\frac{1}{θ^2}\right)+\left(θ -\frac{1}{θ}\right)e^{-θ} \\ =e^{-θ} \left(1+\frac{1}{θ ^2}-θ +\frac{1}{θ}\right)\\ \frac{dy}{dθ}=e^{-θ}\left(\frac{θ ^2+1 -θ^3 +θ}{θ ^2}\right)\\ \frac{dy}{dθ}=e^{-θ}\left(\frac{-θ ^3+θ ^2+θ +1}{θ ^2}\right)\ \ \ \ ......(2)
Question 11. Find\frac{dy}{dx} , when x=\frac{2t}{1+t^2} andy=\frac{1-t^2}{1+t^2}
Solution:

Here,
x=\frac{2t}{1+t^2}
Differentiating it with respect to t using quotient rule,
\frac{dx}{dt}=\left[\frac{(1+t^2)\frac{d}{dt}(2t)-2t\frac{d}{dt}(1+t^2)}{(1+t^2)^2}\right]\\ =\left[\frac{(1+t^2)(2)-2t(2t)}{(1+t^2)^2}\right]\\ =\left[\frac{2+2t^2-4t^2}{(1+t^2)^2}\right]\\ =\left[\frac{2+2t^2-4t^2}{(1+t^2)^2}\right]\\ =\left[\frac{2-2t^2}{(1+t^2)^2}\right]\\ \frac{dx}{dt}=\frac{2(1-t^2)}{(1+t^2)^2}\ \ \ \ \ ....(1)
and,
y=\frac{1-t^2}{1+t^2}
Differentiating it with respect to t using quotient rule,
\frac{dy}{dt}=\left[\frac{(1+t^2)\frac{d}{dt}(1-t^2)-(1-t^2)\frac{d}{dt}(1+t^2)}{(1+t^2)^2}\right]\\ =\left[\frac{(1+t^2)(-2t)-(1-t^2)(2t)}{(1+t^2)^2}\right]\\ =\left[\frac{-2t-2t^3-2t+2t^3}{(1+t^2)^2}\right]\\ \frac{dy}{dt}=\frac{-4t}{(1+t^2)^2}\ \ \ \ \ ....(2)
Dividing equation (2) by (1)
\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{-4t}{(1+t^2)^2}\times\frac{(1+t^2)^2}{2(1-t^2)}\\ =\frac{-2t}{1-t^2}\\ \frac{dy}{dx}=-\frac{x}{y}\ \ \ \ \left[Since,\ \frac{x}{y}=\frac{2t}{1+t^2}\times\frac{1+t^2}{1-t^2}=\frac{2t}{1-t^2}\right]
Question 12. Find\frac{dy}{dx} , when x=cos^{-1}\left(\frac{1}{\sqrt{1+t^2}}\right) andy=sin^{-1}\left(\frac{1}{\sqrt{1+t^2}}\right)
Solution:
Here,
x=cos^{-1}\left(\frac{1}{\sqrt{1+t^2}}\right)
Differentiating it with respect to t using chain rule,
\frac{dx}{dt}=\frac{-1}{\sqrt{1-\left(\frac{1}{1+t^2}\right)}^2}\frac{d}{dt}\left(\frac{1}{\sqrt{1+t^2}}\right)\\ =\frac{-1}{\sqrt{1-\frac{1}{(1+t^2)}}}\left[\frac{-1}{2(1+t^2)^{\frac{3}{2}}}\right]\frac{d}{dt}(1+t^2)\\ =\frac{(1+t^2)^{\frac{1}{2}}}{\sqrt{1+t^2-1}}\times\frac{-1}{2(1+t^2)^{\frac{3}{2}}}(2t)\\ =\frac{-t}{\sqrt{t^2}\times(1+t^2)}\\ \frac{dx}{dt}=\frac{-1}{1+t^2}\ \ \ \ \ ....(1)
Now,
y=sin^{-1}\left(\frac{1}{\sqrt{1+t^2}}\right)
Differentiating it with respect to t using chain rule,
\frac{dy}{dt}=\frac{1}{\sqrt{1-\frac{1}{(\sqrt{1+t^2})^2}}}\times\frac{d}{dt}\left(\frac{1}{\sqrt{1+t^2}}\right)\ \ \ \ .....(2)
Dividing equation (2) by (1)
\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{1}{(1+t^2)}\times\frac{(1+t^2)}{-1}\\ \frac{dy}{dx}=1
Question 13. Find\frac{dy}{dx} , when x=\frac{1-t^2}{1+t^2} andy=\frac{2t}{1+t^2}
Solution:
Here,
x=\frac{1-t^2}{1+t^2}
Differentiating it with respect to t using quotient rule,
\frac{dx}{dt}=\left[\frac{(1+t^2)\frac{d}{dt}(1-t^2)-(1-t^2)\frac{d}{dt}(1+t^2)}{(1+t^2)^2}\right]\\ =\left[\frac{(1+t^2)(-2t)-(1-t^2)(2t)}{(1+t^2)^2}\right]\\ =\left[\frac{-2t-2t^3-2t+2t^3}{(1+t^2)^2}\right]\\ \frac{dx}{dt}=\frac{-4t}{(1+t^2)^2}\ \ \ \ \ ....(1)
and,
y=\frac{2t}{1+t^2}
Differentiating it with respect to t using quotient rule,
\frac{dy}{dt}=\left[\frac{(1+t^2)\frac{d}{dt}(2t)-2t\frac{d}{dt}(1+t^2)}{(1+t^2)^2}\right]\\ =\left[\frac{(1+t^2)(2)-2t(2t)}{(1+t^2)^2}\right]\\ =\left[\frac{2+2t^2-4t^2}{(1+t^2)^2}\right]\\ \frac{dx}{dt}=\frac{2(1-t^2)}{(1+t^2)^2}\ \ \ \ \ ....(2)
Question 14. If x = 2cosθ – cos2θ and y = 2sinθ – sin2θ, prove that\frac{dy}{dx}=tan\left(\frac{3\theta}{2}\right)
Solution:
Here,
x = 2cosθ – cos2θ
Differentiating it with respect to θ using chain rule,
\frac{dx}{dθ}=2(-sinθ )-(-sin2θ)\frac{d}{dθ} (2θ )\\ =-2sinθ +2sin2θ \\ \frac{dx}{dθ}=2(sin2θ -sinθ )\ \ \ \ \ ....(1)
and,
y = 2sinθ – sin2θ
Differentiating it with respect to θ using chain rule,
\frac{dy}{dθ}=2cosθ -cos2θ \frac{d}{dθ}(2θ )\\ =2cosθ -cos2θ (2)\\ =2cosθ -2cos2θ \\ \frac{dy}{dθ}=2(cosθ -cos2θ )\ \ \ \ \ ....(2)
Dividing equation (2) by equation (1),
\frac{\frac{dy}{dθ}}{\frac{dx}{dθ}}=\frac{2(cosθ -cos2θ )}{2(sin2θ - sinθ )}\\ =\frac{cosθ -cos2θ}{sin2θ -sinθ}\\ \frac{dy}{dx}=\frac{-2sin\left(\frac{θ +2θ}{2}\right)sin\left(\frac{θ -2θ}{2}\right)}{2cos\left(\frac{2θ +θ}{2}\right)sin\left(\frac{2θ -θ}{2}\right)}\ \ \ \ \left[Since,\ sinA-sinB=2cos\left(\frac{A+B}{2}\right)sin\left(\frac{A-B}{2}\right),\ \ cosA-cosB=-2sin\left(\frac{A+B}{2}\right)sin\left(\frac{A-B}{2}\right)\right]\\ =\frac{-sin\left(\frac{3θ )}{2}\right)\left(sin\left(\frac{-θ}{2}\right)\right)}{cos\left(\frac{3θ}{2}\right)sin\left(\frac{θ}{2}\right)}\\ =\frac{sin\left(\frac{3θ}{2}\right)}{cos\left(\frac{3θ}{2}\right)}\\ \frac{dy}{dx}=tan\left(\frac{3θ}{2}\right)
Question 15. If x = ecos2t and y = esin2t prove that,\frac{dy}{dx}=\frac{y\ log\ x}{x\ log\ y}
Solution:
Here,
x = ecos2t
Differentiating it with respect to t using chain rule,
\frac{dx}{dt}=\frac{d}{dt}(e^{cos2t})\\ =e^{cos2t}\frac{d}{dt}(cos2t)\\ =e^{cos2t}(-sin2t)\frac{d}{dt}(2t)\\ \frac{dx}{dt}=-sin2te^{cos2t}\ \ \ \ \ .....(1)
and,
y = esin2t
Differentiating it with respect to t using chain rule,
\frac{dy}{dt}=\frac{d}{dt}(e^{sin2t})\\ =e^{sin2t}\frac{d}{dt}(sin2t)\\ =e^{sin2t}(cos2t)\frac{d}{dt}(2t)\\ =e^{sin2t}(cos2t)(2)\\ \frac{dy}{dt}=2cos2te^{sin2t}\ \ \ \ \ .....(2)
Dividing equation (2) by (1)
\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{2cos2te^{sin2t}}{-2sin2te^{cos2t}}\\ \frac{dy}{dx}=-\frac{ylogx}{xlogy}
\left[Since,\ x=e^{cos2t}\Rightarrow logx=cos2t\ \ y=e^{sin2t}\Rightarrow logy=sin2t\right]
Question 16. If x = cos t and y = sin t, prove that\frac{dy}{dx}=\frac{1}{\sqrt3}\ at\ t=\frac{2x}{3}
Solution:
Here,
x = cos t
Differentiating it with respect to t,
\frac{dx}{dt}=\frac{d}{dt}(cos\ t)\\ \frac{dx}{dt}=-sin\ t\ \ \ \ \ ....(1)
and,
y = sin t
Differentiating it with respect to t,
\frac{dx}{dt}=\frac{d}{dt}(sin\ t)\\ \frac{dx}{dt}=cos\ t\ \ \ \ \ ....(2)
Dividing equation (2) by (1),
\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{cos\ t}{-sin\ t}\\ \frac{dy}{dx}=-cot\ t\\ \left(\frac{dy}{dx}\right)=-cot\left(\frac{2\pi}{3}\right)\\ =-cot\left(\pi-\frac{\pi}{3}\right)\\ =-\left[-cot\left(\frac{\pi}{3}\right)\right]\\ =cot\left(\frac{\pi}{3}\right)\\ \frac{dy}{dx}=\frac{1}{\sqrt3}
Question 17. Ifx=a\left(t+\frac{1}{t}\right) and y=a\left(t-\frac{1}{t}\right) , Prove that\frac{dy}{dx}=\frac{x}{y}
Solution:
Here,
x=a\left(t+\frac{1}{t}\right)
Differentiating it with respect to t,
\frac{dx}{dt}=a\frac{d}{dt}\left(t+\frac{1}{t}\right)\\ =a\left(1-\frac{1}{t^2}\right)\\ \frac{dx}{dt}=a\left(\frac{t^2-1}{t^2}\right)\ \ \ \ \ .....(1)
and,
y=a\left(t-\frac{1}{t}\right)
Differentiating it with respect to t,
\frac{dy}{dt}=a\frac{d}{dt}\left(t-\frac{1}{t}\right)\\ =a\left(1+\frac{1}{t^2}\right)\\ \frac{dy}{dt}=a\left(\frac{t^2+1}{t^2}\right)\ \ \ \ \ .....(2)
Dividing equation (2) by (1)
\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=a\frac{(t^2+1)}{t^2}\times\frac{t^2}{a(t^2-1)}\\ \frac{dy}{dx}=\frac{t^2+1}{t^2-1}\\ \frac{dy}{dx}=\frac{x}{y}\ \ \ \ \ \ \left[Since,\ \frac{x}{y}=\frac{a(t^2+1)}{t}\times\frac{t}{a(t^2-1)}=\left(\frac{t^2+1}{t^2-1}\right)\right]
Question 18. Ifx=sin^{-1}\left(\frac{2t}{1+t^2}\right) andy =tan^{-1}\left(\frac{2t}{1-t^2}\right) , -1 < 1 < 1, prove that\frac{dy}{dx}=1
Solution:
Here,
x=sin^{-1}\left(\frac{2t}{1+t^2}\right)
Put t = tan θ
x=sin^{-1}\left(\frac{2tanθ}{1+tan^2θ}\right)\\ =sin^{-1}(sin2θ )\\ =2θ \ \ \ \ \ \left[Since,\ sin\ 2x=\frac{2tan\ x}{1+tan^2x}\right]\\ x=2(tan^{-1}t)\ \ \ \ \ [Since,\ t=sin\ θ ]
Differentiating it with respect to t,
\frac{dx}{dt}=\frac{2}{1+t^2}\ \ \ \ \ .....(1)
Further,
y =tan^{-1}\left(\frac{2t}{1-t^2}\right)
Put t = tan θ
y=tan^{-1}\left(\frac{2tanθ}{1+tan^2θ}\right)\\ =tan^{-1}(tan2θ )\\ =2θ \ \ \ \ \ \left[Since,\ tan\ 2x=\frac{2tan\ x}{1-tan^2x}\right]\\ y=2tan^{-1}t\ \ \ \ \ [Since,\ t=tan\ θ ]
Differentiating it with respect to t,
\frac{dy}{dt}=\frac{2}{1+t^2}\ \ \ \ \ \ ......(2)
Dividing equation (2) by (1),
\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{2}{1+t^2}\times\frac{1+t^2}{2}\\ \frac{dy}{dx}=1
Question 19. If x and y are connected parametrically by the equation, without eliminating the parameter, find\frac{dy}{dx}, when: x=\frac{sin^3t}{\sqrt{cos2t}} ,y=\frac{cos^3t}{\sqrt{cos2t}}
Solution:
Here, the given equations arex=\frac{sin^3t}{\sqrt{cos2t}} andy=\frac{cos^3t}{\sqrt{cos2t}}
Thus,
\frac{dx}{dt}\frac{d}{dt}\left[\frac{sin^3t}{\sqrt{cos2t}}\right]\\ =\frac{\sqrt{cos2t}.\frac{d}{dt}(sin^3t)-sin^3t.\frac{d}{dt}\sqrt{cos2t}}{cos2t}\\ =\frac{\sqrt{cos2t}.3sin^2t.\frac{d}{dt}(sin\ t)-sin^3t\times\frac{1}{2\sqrt{cos\ 2t}}.\frac{d}{dt}(cos2t)}{cos2t}\\ =\frac{3\sqrt{cos\ 2t}.sin^2t\ cos\ t-\frac{sin^3t}{2\sqrt{cos\ 2t}}.(-2sin\ 2t)}{cos\ 2t}\\ =\frac{3cos\ 2t\ sin^2tcos\ t+sin^3tsin\ 2t}{cos\ 2t\sqrt{cos\ 2t}}\\ \frac{dy}{dt}=\frac{d}{dt}\left[\frac{cos^3t}{\sqrt{cos\ 2t}}\right]\\ =\frac{\sqrt{cos\ 2t}.\frac{d}{dt}(cos^3t)-cos^3t.\frac{d}{dt}(\sqrt{cos\ 2t})}{cos\ 2t}\\ =\frac{-3cos\ 2t.cos^2t.sin\ t+cos^3t\ sin\ 2t}{cos\ 2t.\sqrt{cos\ 2t}}
Therefore,
\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{-3cos\ 2t.cos^2t. sin\ t+cos^3t\ sin\ 2t}{3cos\ 2t\ sin^2t\ cos\ t+sin^3t\ sin\ 2t}\\ =\frac{-3cos\ 2t\ cos^2t.sin\ t+cos^3t(2sin\ t\ cos\ t)}{3cos\ 2t\ sin^2t\ cos\ t+sin^3t(2sin\ t+2sin^3t)}\\ =\frac{[-3(2cos^2t-1)cos\ t+2cos^3t]}{[3(1-2sin^2t)sin\ t+2sin^3t]}\ \ \ \ \ \ \ [cos\ 2t=(2cos^2t-1),\ cos\ 2t=(1-2sin^2t)]\\ =\frac{-4cos^3t+3cos\ t}{3sin\ t-4sin^3\ t}\\ =\frac{-cos\ 3t}{sin\ 3t}\ \ \ \ \ \ [cos\ 3t=4cos^3t3cos\ t,\ sin\ 3t=3sin\ t-4sin^3t]\\ =-cot3t
Question 20. Ifx=\left(t+\frac{1}{t}\right)^a andy=a^{\left(t+\frac{1}{t}\right)} , find\frac{dy}{dx}
Solution:
Here,
x=\left(t+\frac{1}{t}\right)^a
Differentiating it with respect to t using chain rule,
\frac{dx}{dt}=\frac{d}{dt}\left(t+\frac{1}{t}\right)^a\\ =a\left(t+\frac{1}{t}\right)^{a-1}\frac{d}{dt}\left(t+\frac{1}{t}\right)\\ \frac{dx}{dt}=a\left(t+\frac{1}{t}\right)^{1-1}\left(1-\frac{1}{t^2}\right)\ \ \ \ \ .....(1)
And,
y=a^{\left(t+\frac{1}{t}\right)}
Differentiating it with respect to t using chain rule,
\frac{dy}{dt}=\frac{d}{dt}a^{\left(t+\frac{1}{t}\right)}\\ =a^{\left(t+\frac{1}{t}\right)}\times log\ a\ \frac{d}{dt}\left(t+\frac{1}{t}\right)\\ \frac{dy}{dt}=a^{\left(t+\frac{1}{t}\right)}\times log\ a\left(1-\frac{1}{t^2}\right)\ \ \ \ \ ......(2)
Dividing equation (2) by (1)
\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{a^{\left(t+\frac{1}{t}\right)}\times log\ a\left(1-\frac{1}{t^2}\right)}{a\left(t+\frac{1}{t}\right)^{a-1}\left(1-\frac{1}{t^2}\right)}\\ \frac{dy}{dx}=\frac{a^{\left(t+\frac{1}{t}\right)}\times log\ a}{a\left(t+\frac{1}{t}\right)^{a-1}}

Question 21. If x=a\left(\frac{1+t^2}{1-t^2}\right)  and y=\frac{2t}{1-t^2}  , find \frac{dy}{dx}

Solution:

Here,

x=a\left(\frac{1+t^2}{1-t^2}\right)

Differentiate it with respect to t using chain rule,

\frac{dx}{dt}=a\left[\frac{(1+t^2)\frac{d}{dt}(1+t^2)-(1+t^2)\frac{d}{dt}(1-t^2)}{(1-t^2)^2}\right]\\ =a\left[\frac{(1-t^2)(2t)-(1+t^2)(-2t)}{(1-t^2)^2}\right]\\ =a\left[\frac{2t-2t^2+2t+2t^3}{(1-t^2)^2}\right]\\ \frac{dy}{dt}=\frac{4at}{(1-t^2)^2}\ \ \ \ \ ......(1)

And,

y=\frac{2t}{1-t^2}

Differentiate it with respect to t using quotient rule,

\frac{dy}{dt}=a\left[\frac{(1-t^2)\frac{d}{dt}(t)-(t)\frac{d}{dt}(1-t^2)}{(1-t^2)^2}\right]\\ =a\left[\frac{(1-t^2)(1)-(t)(-2t)}{(1-t^2)^2}\right]\\ =a\left[\frac{1-t^2+2t}{(1-t^2)^2}\right]\\ \frac{dy}{dt}=\frac{2(1+t^2)}{(1-t^2)}\ \ \ \ \ ......(2)

Question 22. Find \frac{dy}{dx} , if y = 12(1 – cos t), x = 10(t – sin t), -\frac{\pi}{2}<t<\frac{\pi}{2}

Solution:

It is given that, 

y = 12(1 – cos t),

x = 10(t – sin t)

Therefore,

\frac{dx}{dt}=\frac{d}{dt}[10(t-sin\ t)]\\ =10.\frac{d}{dt}(t-sin\ t)\\ =10(1- cos\ t)
\frac{dy}{dt}=\frac{d}{dt}[12(t-cos\ t)]\\ =12.\frac{d}{dt}(1-cos\ t)\\ =12(0- (-sin\ t)\\ =12sin\ t

Therefore,

\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{12sin\ t}{10(1-cos\ t)}\\ =\frac{12\times2sin\frac{t}{2}\times cos\frac{t}{2}}{10\times2\ sin^2\frac{t}{2}}\\ =\frac{6}{5}\ cot\ \frac{t}{2}

Question 23. If x = a(θ – sin θ) and y = a(1 – cos θ), find \frac{dy}{dx} , at θ = \frac{\pi}{3}

Solution:

Here,

x = a(θ – sin θ)

and

y = a(1 – cos θ)

Then,

\frac{dx}{dθ}=\frac{d}{dθ}[a(θ-sin\ θ]\\ =a(1-cos\ θ)
\frac{dy}{dθ}=\frac{d}{dθ}[a(1+cos\ θ]\\ =a(-sin\ θ)

Therefore,

\frac{dy}{dx}=\frac{\frac{dy}{dθ}}{\frac{dx}{dθ}}=\frac{-asin\ θ}{a(1-cos\ θ)}|_{θ=\frac{\pi}{3}}\\ =-\frac{sin\frac{\pi}{3}}{1-cos\frac{\pi}{3}}\\ =\frac{\frac{\sqrt3}{2}}{1-\frac{1}{2}}=-\sqrt3

Question 24. If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t), show that at t = \frac{\pi}{4},\ \frac{dy}{dx}=\frac{b}{a}

Solution:

Consider the given functions,

x = a sin 2t (1 + cos 2t)

and 

y = b cos 2t (1 – cos 2t)

Write again the functions,

x = a sin 2t + \frac{a}{2}  sin 4t

Differentiate the above function with respect to t,

\frac{dx}{dt}=2a\ cos\ 2t+2a\ cos\ 4t\ \ \ \ \ ....(1)\\

y = b cos 2t (1 – cos 2t)

y = b cos 2t – b cos2 2t

\frac{dy}{dx}=-2b\ sin\ 2t+2b\ cos\ 2t\ sin\ 2t\\=-2b\ sin\ 2t+b\ sin\ 4t\ \ \ \ ....(2)

From equation (1) and (2)

\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{-2b\ sin\ 2t+b\ sin\ 4t}{2a\ cos\ 2t+2a\ cos\ 4t}\\ \therefore\frac{dy}{dx}|_{\frac{\pi}{4}}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}|_{t=\frac{\pi}{4}}=\frac{-2b}{-2a}=\frac{b}{a}

Question 25. If x = cos t (3 – 2cos2t) and y = sin t (3 – 2 sin2t), find the value of \frac{dy}{dx}  at t = \frac{\pi}{4}

Solution:

Here, the given function:

x = cos t (3 – 2cos2t)

x = cos t – 2cos3t

\frac{dx}{dt}=-3sin\ t+6cos^2t\ \ \ \ ......(1)

y = sin t (3 – 2 sin2t)

y = 3cos t – 2sin3t

\frac{dy}{dt}=3cos\ t-6sin^2tcos\ t\ \ \ \ .....(2)\\ \frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}\\ =\frac{3cos\ t-6sin^tcos\ t}{-3sin\ t+6cos^2t\ sin\ t}\\ =\frac{3cos\ t(1-2sin^2t)}{3sin\ t(2cos^2t-1)}\\ =cot\ t\frac{(1-2(1-cos^2t))}{(2cos^2t-1)}\\ =cot\ t\\ \frac{dy}{dx}|_{\frac{\pi}{4}}=cot\frac{\pi}{4}=1

Question 26. If x=\frac{1+log\ t}{t^2} y=\frac{3+2log\ t}{t}  find \frac{dy}{dx}

Solution:

Here,

x=\frac{1+log\ t}{t^2}

 and

y=\frac{3+2log\ t}{t}
\frac{dx}{dt}=\frac{t^2\left(\frac{1}{t}\right)-(1+log\ t)(2t)}{t^4}\\ =\frac{t-2t-2tlog\ t}{t^4}\\ =\frac{-2log\ t-1}{t^3}
\frac{dy}{dt}=\frac{t\left(\frac{2}{t}\right)-(-3+2log\ t)(1)}{t^2}\\ =\frac{2-3-2tlog\ t}{t^2}\\ =\frac{-2log\ t-1}{t^2}
\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{\frac{-2log\ t-1}{t^2}}{\frac{-2log\ t-1}{t^3}}=t

Question 27. If x = 3sin t – sin3t, y = 3cos t – cos3t, find \frac{dy}{dx}\ at\ t=\frac{\pi}{3}

Solution:

x = 3sin t – sin3t

and,

y = 3cos t – cos3t

\frac{dx}{dt}=3cos\ t-3cos3t\\ \frac{dy}{dt}=-3sin\ t+3sin3t\\ \frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{-3sin\ t+3sin3t}{3cos\ t-3cos3t}

When, t=\frac{\pi}{3}

\frac{dy}{dx}=\frac{-3sin(\frac{\pi}{3})+3sin(\pi)}{3cos(\frac{\pi}{3})-3cos(\pi)}=\frac{-3\times\frac{\sqrt3}{2}+0}{3\times\frac{1}{2}-3(-1)}=-\frac{1}{\sqrt3}

Question 28. If sin\ x=\frac{2t}{1+t^2} tan\ y=\frac{2t}{1-t^2}  find \frac{dy}{dx}

Solution:

sin\ x=\frac{2t}{1+t^2}

and,

tan\ y=\frac{2t}{1-t^2}
\Rightarrow x=sin^{-1}\left(\frac{2t}{1+t^2}\right)

and 

\Rightarrow y=tan^{-1}\left(\frac{2t}{1-t^2}\right)
\frac{dx}{dt}=\frac{1}{\sqrt{1-\left(\frac{2t}{1+t^2}\right)^2}}\times\frac{2(1+t^2)-(2t)(2t)}{(1+t^2)^2}\\ \frac{dx}{dt}=\frac{2}{1+t^2}\\ \frac{dy}{dt}=\frac{1}{\left(\frac{2t}{1-t^2}\right)2+1}\times\frac{2(1-t^2)-(2t)(-2t)}{(1-t^2)^2}\\ \frac{dy}{dt}=\frac{2}{1+t^2}
\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}=\frac{\frac{2}{(1+t^2)}}{\frac{2}{(1+t^2)}}=1

I think you got complete solutions for this chapter. If You have any queries regarding this chapter, please comment in the below section our subject teacher will answer you. We tried our best to give complete solutions so you got good marks in your exam.

If these solutions have helped you, you can also share rdsharmasolutions.in to your friends.

Leave a Comment

Your email address will not be published. Required fields are marked *