# RD Sharma Class 10 Ex 2.3 Solutions Chapter 2 Polynomials

In this chapter, we provide RD Sharma Solutions for Class 10 Chapter 2 Polynomials Exercise 2.3 for English medium students, Which will very helpful for every student in their exams. Students can download the latest RD Sharma Solutions for Class 10 Chapter 2 Polynomials Exercise 2.1 pdf, free RD Sharma Solutions for Class 10 Chapter 2 Polynomials Exercise 2.3 book pdf download. Now you will get step by step solution to each question.

## Chapter 2: Polynomials Exercise – 2.3

### Question: 1

Apply division algorithm to find the quotient q(x) and remainder r(x) on dividing f(x) by g(x) in each of the following:

(i) f(x) = x3 – 6x2 + 11x – 6, g(x) = x2 + x + 1

(ii) f(x) = 10x4 + 17x3 – 62x2 + 30x – 105, g(x) = 2x2 + 7x + 1

(iii) f(x) = 4x3 + 8x2 + 8x + 7, g(x) = 2x2 – x + 1

(iv) f(x) = 15x3 – 20x2 + 13x – 12, g(x) = x2 – 2x + 2

### Solution:

(i) f(x) = x3 – 6x2 + 11x – 6 and g(x) = x+ x + 1

(ii) f(x) = 10x+ 17x3 – 62x2 + 30x – 105, g(x) = 2x2 + 7x + 1

(iii) f(x) = 4x3 + 8x2 + 8x + 7, g(x) = 2x2 – x + 1

(iv) f(x) = 15x3 – 20x2 + 13x – 12, g(x) = x– 2x + 2

### Question: 2

Check whether the first polynomial is a factor of the second polynomial by applying the division algorithm:

(i) g(t) = t2 – 3; f(t) = 2t4 + 3t3 – 2t2 – 9t – 12

(ii) g(x) = x2 – 3x + 1; f(x) = x5 – 4x3 + x2 + 3x + 1

(iii) g(x) = 2x2 – x + 3; f(x) = 6x5 − x4 + 4x3 – 5x2 – x – 15

### Solution:

(i) g(t) = t2 – 3; f(t) = 2t4 + 3t3 – 2t2 – 9t – 12

### g(t) = t2 – 3g(t) = t– 3 f(t) = 2t4 + 3t3 – 2t2 – 9t Therefore, g(t) is the factor of f(t).

(ii) g(x) = x– 3x + 1; f(x) = x5 – 4x3 + x2 + 3x + 1

g(x) = x2 – 3x + 1 g(x) = x2 – 3x + 1 f(x) = x5 – 4x3 + x2 + 3x + 1.Therefore, g(x) is not the factor of f(x).

(iii) g(x) = 2x2 – x + 3; f(x) = 6x5 − x4 + 4x3 – 5x2 – x – 15

g(x) = 2x2 – x + 3 g(x) = 2x2 – x + 3 f(x) = 6x5 − x4 + 4x– 5x2 – x – 15

### Question: 3

Obtain all zeroes of the polynomial f(x) = f(x) = 2x4 + x3 – 14x2 – 19x – 6, if two of its zeroes are -2 and -1.

### Solution:

f(x) = 2x+ x3 – 14x2 – 19x – 6

If the two zeroes of the polynomial are -2 and -1, then its factors are (x + 2) and (x + 1)

(x + 2)(x + 1) = x2 + x + 2x + 2 = x2 + 3x + 2

f(x) = 2x4 + x3 – 14x2 – 19x – 6 = (2x2 – 5x – 3)(x+ 3x + 2)

= (2x + 1)(x – 3)(x + 2)(x + 1)

Therefore, zeroes of the polynomial = – 1/2, 3, -2 , -1

### Question: 4

Obtain all zeroes of f(x) = x3 + 13x2 + 32x + 20, if one of its zeroes is -2.

### Solution:

f(x) = x3 + 13x+ 32x + 20

Since, the zero of the polynomial is -2 so, it means its factor is (x + 2).

So, f(x) = x3 + 13x2 + 32x + 20 =  (x2 + 11x + 10)(x + 2)

= (x+ 10x + x + 10)(x + 2)

= (x + 10)(x + 1)(x + 2)

Therefore, the zeroes of the polynomial are – 1, – 10, – 2.

### Question: 5

Obtain all zeroes of the polynomial f(x) = x– 3x3 – x2 + 9x – 6, if the two of its zeroes are – √3 and √3.

### Solution:

f(x) = x4 – 3x3 – x2 + 9x – 6 Since, two of the zeroes of polynomial are -√3 and √3 so,(x + √3)(x – √3) = x2– 3x2 – 3

So, f(x) = x4 – 3x2 – x+ 9x – 6 = (x– 3)(x2 – 3x + 2)

= (x + √3)(x – √3)(x2– 2x – 2 + 2)

= (x + √3)(x – √3)(x – 1)(x – 2)

Therefore, the zeroes of the polynomial are – √3, √3, 1, 2.

### Question: 6

Obtain all zeroes of the polynomial f(x) = 2x4 – 2x3 – 7x2 + x – 1, if the two of its zeroes are – √(3/2) and √(3/2).

### Solution:

f(x) = 2x4 – 2x3 – 7x2 + x – 1 Since, – √(3/2)  and √(3/2) are the zeroes of the polynomial, so the factors are

So, f(x) = 2x4– 2x3–7x2+ x – 1

Therefore, the zeroes of the polynomial = x = -1, 2, -√(3/2) and √(3/2).

### Question: 7

Find all the zeroes of the polynomial x4 + x– 34x2 – 4x + 120, if the two of its zeroes are 2 and – 2.

### Solution:

x4 + x3 – 34x2 – 4x + 120 Since, the two zeroes of the polynomial given is 2 and – 2 So, factors are (x + 2)(x – 2) =  x2 + 2x – 2x – 4 = x2 – 4x2 – 4

So, x4 + x3 – 34x2 – 4x + 120 = (x2 – 4)(x2 + x – 30)

= (x – 2)(x + 2)(x2 + 6x – 5x – 30)

=  (x – 2)(x + 2)(x + 6)(x – 5)

Therefore, the zeroes of the polynomial = x = 2, – 2, – 6, 5

### Question: 8

Find all the zeroes of the polynomial 2x4 + 7x3 – 19x2 – 14x + 30, if the two of its zeroes are √2 and – √2.

### Solution:

2x4 + 7x3 – 19x2 – 14x + 30Since, √2 and-√2 are the zeroes of the polynomial given. So, factors are (x + √2) and (x – √2)

= x2+√2x – √2x – 2 = x– 2

So, 2x4 + 7x3 – 19x2 – 14x + 30 = (x2 – 2)(2x2 + 7x – 15)

= (2x2+ 10x – 3x – 15)(x + √2)(x – √2)

= (2x – 3)(x + 5)(x + √2)(x – √2)

Therefore, the zeroes of the polynomial is √2,- √2,-5, 3/2.

### Question: 9

Find all the zeroes of the polynomial f(x) = 2x3 + x2 – 6x – 3, if two of its zeroes are – √3 and √3.

### Solution:

f(x) = 2x3 + x2 – 6x – 3 Since, -√3 and √3 are the zeroes of the given polynomial So, factors are (x – √3) and (x + √3)

= (x2– √3x + √3x – 3) = (x2 – 3)

So, f(x) = 2x3 + x2 – 6x – 3 = (x2 – 3)(2x + 1)

= (x – √3)(x + √3)(2x + 1)

Therefore, set of zeroes for the given polynomial = √3,– √3, –1/2

### Question: 10

Find all the zeroes of the polynomial f(x) = x3 + 3x2 – 2x – 6, if the two of its zeroes are √2 and – √2.

### Solution:

f(x) = x+ 3x2 – 2x – 6 Since, √2 and -√2 are the two zeroes of the given polynomial. So, factors are (x + √2) and (x – √2)

= x2+ √2x – √2x – 2 = x2 – 2

By division algorithm, we have:

f(x) = x3 + 3x2 – 2x – 6 = (x2 – 2)(x + 3)

= (x – √2)(x + √2)(x + 3)

Therefore, the zeroes of the given polynomial is – √2, √2 and – 3.

### Question: 11

What must be added to the polynomial f(x) = x4 + 2x3 – 2x2 + x − 1 so that the resulting polynomial is exactly divisible by g(x) = x2 + 2x − 3.

### Solution:

f(x) = x4 + 2x3 – 2x2 + x − 1

We must add (x – 2) in order to get the resulting polynomial exactly divisible by g(x) = x2 + 2x − 3.

### Question: 12

What must be subtracted from the polynomial f(x) = x4 + 2x3 – 13x–12x + 21 so that the resulting polynomial is exactly divisible by g(x) = x– 4x + 3.

### Solution:

f(x) = x4 + 2x3 – 13x2 – 12x + 21

We must subtract (2x – 3) in order to get the resulting polynomial exactly divisible by g(x) = x2 – 4x + 3.

### Question: 13

Given that √2 is a zero of the cubic polynomial f(x) = 6x3+ √2x2– 10x – 4√2, find its other two zeroes.

### Solution:

f(x) = 6x3+√2x– 10x – 4√2 Since, √2 is a zero of the cubic polynomial So, factor is (x–√2)

### Question: 14

Given that x – √5 is a factor of the cubic polynomial find all the zeroes of the polynomial.

### Solution:

In the question, it’s given that x – √5 is a factor of the cubic polynomial.

So, the zeroes of the polynomial All Chapter RD Sharma Solutions For Class10 Maths

I think you got complete solutions for this chapter. If You have any queries regarding this chapter, please comment on the below section our subject teacher will answer you. We tried our best to give complete solutions so you got good marks in your exam.